--- library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer base_model: norallm/normistral-7b-warm datasets: - hugodk-sch/aftonposten_title_prefs model-index: - name: ap-normistral-7b-align-scan results: [] --- # ap-normistral-7b-align-scan This model is a fine-tuned version of [data/ap-normistral-7b-sft-qlora](https://huggingface.co/data/ap-normistral-7b-sft-qlora) on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set: - Loss: 0.6762 - Rewards/chosen: -0.0561 - Rewards/rejected: -0.0991 - Rewards/accuracies: 0.5889 - Rewards/margins: 0.0431 - Logps/rejected: -36.9578 - Logps/chosen: -33.0039 - Logits/rejected: 97.9360 - Logits/chosen: 97.9657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6795 | 0.26 | 100 | 0.6967 | 0.0004 | 0.0027 | 0.4846 | -0.0023 | -35.9393 | -32.4388 | 98.7026 | 98.7111 | | 0.6355 | 0.52 | 200 | 0.6793 | -0.0461 | -0.0803 | 0.5835 | 0.0342 | -36.7700 | -32.9042 | 98.1082 | 98.1292 | | 0.6306 | 0.78 | 300 | 0.6733 | -0.0561 | -0.1040 | 0.6121 | 0.0480 | -37.0066 | -33.0038 | 97.9574 | 97.9847 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.1