--- license: apache-2.0 library_name: peft tags: - trl - dpo - generated_from_trainer base_model: norallm/normistral-7b-warm model-index: - name: ap-normistral-7b-align-scan results: [] --- # ap-normistral-7b-align-scan This model is a fine-tuned version of [norallm/normistral-7b-warm](https://huggingface.co/norallm/normistral-7b-warm) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7744 - Rewards/chosen: -0.0855 - Rewards/rejected: -0.2061 - Rewards/accuracies: 0.5428 - Rewards/margins: 0.1206 - Logps/rejected: -36.2242 - Logps/chosen: -32.5501 - Logits/rejected: 98.7517 - Logits/chosen: 98.7722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.7017 | 0.26 | 100 | 0.8030 | -0.0408 | -0.0544 | 0.5137 | 0.0136 | -36.0346 | -32.4942 | 98.7637 | 98.7765 | | 0.6236 | 0.52 | 200 | 0.7719 | -0.1720 | -0.2931 | 0.5216 | 0.1211 | -36.3329 | -32.6582 | 98.7039 | 98.7271 | | 0.5655 | 0.78 | 300 | 0.7744 | -0.0855 | -0.2061 | 0.5428 | 0.1206 | -36.2242 | -32.5501 | 98.7517 | 98.7722 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.1