--- library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer base_model: norallm/normistral-7b-warm datasets: - hugodk-sch/aftonposten_title_prefs model-index: - name: ap-normistral-7b-align-scan results: [] --- # ap-normistral-7b-align-scan This model is a fine-tuned version of [data/ap-normistral-7b-sft-qlora](https://huggingface.co/data/ap-normistral-7b-sft-qlora) on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set: - Loss: 2.3100 - Rewards/chosen: 0.0457 - Rewards/rejected: 0.0544 - Rewards/accuracies: 0.5216 - Rewards/margins: -0.0087 - Logps/rejected: -35.8577 - Logps/chosen: -32.3518 - Logits/rejected: 98.9864 - Logits/chosen: 98.9943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 2.7048 | 0.26 | 100 | 2.2451 | -0.0296 | -0.0855 | 0.5336 | 0.0560 | -36.1376 | -32.5023 | 98.8517 | 98.8635 | | 3.9434 | 0.52 | 200 | 1.9716 | -0.0023 | -0.0949 | 0.5930 | 0.0926 | -36.1564 | -32.4479 | 98.9501 | 98.9549 | | 2.0991 | 0.78 | 300 | 2.2604 | 0.0453 | 0.0322 | 0.4880 | 0.0131 | -35.9021 | -32.3526 | 98.9966 | 99.0055 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.1