--- library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer base_model: norallm/normistral-7b-warm datasets: - hugodk-sch/aftonposten_title_prefs model-index: - name: ap-normistral-7b-align-scan results: [] --- # ap-normistral-7b-align-scan This model is a fine-tuned version of [data/ap-normistral-7b-sft-qlora](https://huggingface.co/data/ap-normistral-7b-sft-qlora) on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set: - Loss: 1.7667 - Rewards/chosen: 0.0466 - Rewards/rejected: 0.0526 - Rewards/accuracies: 0.4880 - Rewards/margins: -0.0060 - Logps/rejected: -35.9008 - Logps/chosen: -32.3849 - Logits/rejected: 98.9812 - Logits/chosen: 98.9874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.5488 | 0.26 | 100 | 1.7743 | -0.0738 | -0.1533 | 0.5378 | 0.0795 | -36.1581 | -32.5354 | 98.8023 | 98.8147 | | 3.6133 | 0.52 | 200 | 1.8922 | -0.0939 | -0.1399 | 0.5166 | 0.0460 | -36.1414 | -32.5606 | 99.0488 | 99.0652 | | 2.1193 | 0.78 | 300 | 1.5939 | 0.0537 | 0.0702 | 0.5191 | -0.0166 | -35.8787 | -32.3761 | 98.9855 | 98.9917 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.1