--- library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer base_model: norallm/normistral-7b-warm datasets: - hugodk-sch/aftonposten_title_prefs model-index: - name: ap-normistral-7b-align-scan results: [] --- # ap-normistral-7b-align-scan This model is a fine-tuned version of [data/ap-normistral-7b-sft-qlora](https://huggingface.co/data/ap-normistral-7b-sft-qlora) on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set: - Loss: 0.4992 - Rewards/chosen: 0.0239 - Rewards/rejected: 0.0174 - Rewards/accuracies: 0.4892 - Rewards/margins: 0.0064 - Logps/rejected: -35.7921 - Logps/chosen: -32.2044 - Logits/rejected: 98.2668 - Logits/chosen: 98.2727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.4933 | 0.26 | 100 | 0.5023 | 0.0062 | 0.0168 | 0.4498 | -0.0106 | -35.7990 | -32.3816 | 98.6627 | 98.6788 | | 0.4602 | 0.52 | 200 | 0.4967 | 0.0067 | -0.0120 | 0.5511 | 0.0188 | -36.0870 | -32.3759 | 98.3410 | 98.3552 | | 0.4586 | 0.78 | 300 | 0.4994 | 0.0186 | 0.0126 | 0.5129 | 0.0060 | -35.8407 | -32.2572 | 98.2712 | 98.2791 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.1