--- license: apache-2.0 library_name: peft tags: - alignment-handbook - trl - sft - generated_from_trainer base_model: norallm/normistral-7b-warm datasets: - hugodk-sch/aftonposten_title_sft model-index: - name: ap-normistral-7b-sft-qlora results: [] --- # ap-normistral-7b-sft-qlora This model is a fine-tuned version of [norallm/normistral-7b-warm](https://huggingface.co/norallm/normistral-7b-warm) on the hugodk-sch/aftonposten_title_sft dataset. It achieves the following results on the evaluation set: - Loss: 1.6055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.063 | 1.0 | 264 | 2.1618 | | 1.2293 | 2.0 | 528 | 1.9121 | | 0.6985 | 3.0 | 792 | 1.6916 | | 0.4922 | 4.0 | 1056 | 1.6054 | | 0.3396 | 5.0 | 1320 | 1.6055 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.1