hugodk-sch commited on
Commit
10a6389
1 Parent(s): a384ee4

End of training

Browse files
Files changed (3) hide show
  1. README.md +13 -10
  2. all_results.json +13 -0
  3. eval_results.json +11 -11
README.md CHANGED
@@ -1,10 +1,13 @@
1
  ---
2
  library_name: peft
3
  tags:
 
4
  - trl
5
  - dpo
6
  - generated_from_trainer
7
  base_model: NorLLM-AI/NorMistral-7B
 
 
8
  model-index:
9
  - name: norllm-ai-normistral-7b-align-scan
10
  results: []
@@ -15,17 +18,17 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # norllm-ai-normistral-7b-align-scan
17
 
18
- This model is a fine-tuned version of [NorLLM-AI/NorMistral-7B](https://huggingface.co/NorLLM-AI/NorMistral-7B) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.9279
21
- - Rewards/chosen: -0.0837
22
- - Rewards/rejected: -0.1567
23
- - Rewards/accuracies: 0.6125
24
- - Rewards/margins: 0.0730
25
- - Logps/rejected: -35.4817
26
- - Logps/chosen: -31.7010
27
- - Logits/rejected: -2.8247
28
- - Logits/chosen: -2.8267
29
 
30
  ## Model description
31
 
 
1
  ---
2
  library_name: peft
3
  tags:
4
+ - alignment-handbook
5
  - trl
6
  - dpo
7
  - generated_from_trainer
8
  base_model: NorLLM-AI/NorMistral-7B
9
+ datasets:
10
+ - hugodk-sch/aftonposten_title_prefs
11
  model-index:
12
  - name: norllm-ai-normistral-7b-align-scan
13
  results: []
 
18
 
19
  # norllm-ai-normistral-7b-align-scan
20
 
21
+ This model is a fine-tuned version of [data/norllm-ai-normistral-7b-sft-qlora](https://huggingface.co/data/norllm-ai-normistral-7b-sft-qlora) on the hugodk-sch/aftonposten_title_prefs dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.9294
24
+ - Rewards/chosen: -0.0900
25
+ - Rewards/rejected: -0.1614
26
+ - Rewards/accuracies: 0.6009
27
+ - Rewards/margins: 0.0715
28
+ - Logps/rejected: -35.5053
29
+ - Logps/chosen: -31.7323
30
+ - Logits/rejected: -2.8259
31
+ - Logits/chosen: -2.8279
32
 
33
  ## Model description
34
 
all_results.json CHANGED
@@ -1,5 +1,18 @@
1
  {
2
  "epoch": 1.0,
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  "train_loss": 0.8011291454364727,
4
  "train_runtime": 2726.0249,
5
  "train_samples": 3079,
 
1
  {
2
  "epoch": 1.0,
3
+ "eval_logits/chosen": -2.8279476165771484,
4
+ "eval_logits/rejected": -2.8258962631225586,
5
+ "eval_logps/chosen": -31.732280731201172,
6
+ "eval_logps/rejected": -35.50532150268555,
7
+ "eval_loss": 0.9294446110725403,
8
+ "eval_rewards/accuracies": 0.6009136438369751,
9
+ "eval_rewards/chosen": -0.08996524661779404,
10
+ "eval_rewards/margins": 0.07146809250116348,
11
+ "eval_rewards/rejected": -0.16143333911895752,
12
+ "eval_runtime": 112.8197,
13
+ "eval_samples": 343,
14
+ "eval_samples_per_second": 3.04,
15
+ "eval_steps_per_second": 0.381,
16
  "train_loss": 0.8011291454364727,
17
  "train_runtime": 2726.0249,
18
  "train_samples": 3079,
eval_results.json CHANGED
@@ -1,16 +1,16 @@
1
  {
2
  "epoch": 1.0,
3
- "eval_logits/chosen": -2.8154520988464355,
4
- "eval_logits/rejected": -2.8132472038269043,
5
- "eval_logps/chosen": -31.453943252563477,
6
- "eval_logps/rejected": -35.06647872924805,
7
- "eval_loss": 0.907057523727417,
8
- "eval_rewards/accuracies": 0.5714285373687744,
9
- "eval_rewards/chosen": -0.08574554324150085,
10
- "eval_rewards/margins": 0.0984167754650116,
11
- "eval_rewards/rejected": -0.18416231870651245,
12
- "eval_runtime": 112.8077,
13
  "eval_samples": 343,
14
- "eval_samples_per_second": 3.041,
15
  "eval_steps_per_second": 0.381
16
  }
 
1
  {
2
  "epoch": 1.0,
3
+ "eval_logits/chosen": -2.8279476165771484,
4
+ "eval_logits/rejected": -2.8258962631225586,
5
+ "eval_logps/chosen": -31.732280731201172,
6
+ "eval_logps/rejected": -35.50532150268555,
7
+ "eval_loss": 0.9294446110725403,
8
+ "eval_rewards/accuracies": 0.6009136438369751,
9
+ "eval_rewards/chosen": -0.08996524661779404,
10
+ "eval_rewards/margins": 0.07146809250116348,
11
+ "eval_rewards/rejected": -0.16143333911895752,
12
+ "eval_runtime": 112.8197,
13
  "eval_samples": 343,
14
+ "eval_samples_per_second": 3.04,
15
  "eval_steps_per_second": 0.381
16
  }