hugodk-sch commited on
Commit
6d84f73
1 Parent(s): 5bfea0c

End of training

Browse files
Files changed (3) hide show
  1. README.md +13 -10
  2. all_results.json +13 -0
  3. eval_results.json +11 -11
README.md CHANGED
@@ -1,10 +1,13 @@
1
  ---
2
  library_name: peft
3
  tags:
 
4
  - trl
5
  - dpo
6
  - generated_from_trainer
7
  base_model: NorLLM-AI/NorMistral-7B
 
 
8
  model-index:
9
  - name: norllm-ai-normistral-7b-align-scan
10
  results: []
@@ -15,17 +18,17 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # norllm-ai-normistral-7b-align-scan
17
 
18
- This model is a fine-tuned version of [NorLLM-AI/NorMistral-7B](https://huggingface.co/NorLLM-AI/NorMistral-7B) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.4909
21
- - Rewards/chosen: 0.0420
22
- - Rewards/rejected: -0.0034
23
- - Rewards/accuracies: 0.6013
24
- - Rewards/margins: 0.0454
25
- - Logps/rejected: -34.7152
26
- - Logps/chosen: -31.0725
27
- - Logits/rejected: -2.8183
28
- - Logits/chosen: -2.8209
29
 
30
  ## Model description
31
 
 
1
  ---
2
  library_name: peft
3
  tags:
4
+ - alignment-handbook
5
  - trl
6
  - dpo
7
  - generated_from_trainer
8
  base_model: NorLLM-AI/NorMistral-7B
9
+ datasets:
10
+ - hugodk-sch/aftonposten_title_prefs
11
  model-index:
12
  - name: norllm-ai-normistral-7b-align-scan
13
  results: []
 
18
 
19
  # norllm-ai-normistral-7b-align-scan
20
 
21
+ This model is a fine-tuned version of [data/norllm-ai-normistral-7b-sft-qlora](https://huggingface.co/data/norllm-ai-normistral-7b-sft-qlora) on the hugodk-sch/aftonposten_title_prefs dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.4908
24
+ - Rewards/chosen: 0.0412
25
+ - Rewards/rejected: -0.0039
26
+ - Rewards/accuracies: 0.5868
27
+ - Rewards/margins: 0.0450
28
+ - Logps/rejected: -34.7175
29
+ - Logps/chosen: -31.0766
30
+ - Logits/rejected: -2.8191
31
+ - Logits/chosen: -2.8217
32
 
33
  ## Model description
34
 
all_results.json CHANGED
@@ -1,5 +1,18 @@
1
  {
2
  "epoch": 1.0,
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  "train_loss": 0.4552104888024268,
4
  "train_runtime": 2721.944,
5
  "train_samples": 3079,
 
1
  {
2
  "epoch": 1.0,
3
+ "eval_logits/chosen": -2.821664571762085,
4
+ "eval_logits/rejected": -2.819110155105591,
5
+ "eval_logps/chosen": -31.076623916625977,
6
+ "eval_logps/rejected": -34.71748352050781,
7
+ "eval_loss": 0.49079883098602295,
8
+ "eval_rewards/accuracies": 0.5867940187454224,
9
+ "eval_rewards/chosen": 0.04116562753915787,
10
+ "eval_rewards/margins": 0.045030828565359116,
11
+ "eval_rewards/rejected": -0.003865197068080306,
12
+ "eval_runtime": 112.8844,
13
+ "eval_samples": 343,
14
+ "eval_samples_per_second": 3.039,
15
+ "eval_steps_per_second": 0.381,
16
  "train_loss": 0.4552104888024268,
17
  "train_runtime": 2721.944,
18
  "train_samples": 3079,
eval_results.json CHANGED
@@ -1,16 +1,16 @@
1
  {
2
  "epoch": 1.0,
3
- "eval_logits/chosen": -2.8172521591186523,
4
- "eval_logits/rejected": -2.8152647018432617,
5
- "eval_logps/chosen": -31.13959503173828,
6
- "eval_logps/rejected": -34.71931457519531,
7
- "eval_loss": 0.48413917422294617,
8
- "eval_rewards/accuracies": 0.5490033626556396,
9
- "eval_rewards/chosen": 0.07142771780490875,
10
- "eval_rewards/margins": 0.08200670033693314,
11
- "eval_rewards/rejected": -0.010578980669379234,
12
- "eval_runtime": 112.892,
13
  "eval_samples": 343,
14
- "eval_samples_per_second": 3.038,
15
  "eval_steps_per_second": 0.381
16
  }
 
1
  {
2
  "epoch": 1.0,
3
+ "eval_logits/chosen": -2.821664571762085,
4
+ "eval_logits/rejected": -2.819110155105591,
5
+ "eval_logps/chosen": -31.076623916625977,
6
+ "eval_logps/rejected": -34.71748352050781,
7
+ "eval_loss": 0.49079883098602295,
8
+ "eval_rewards/accuracies": 0.5867940187454224,
9
+ "eval_rewards/chosen": 0.04116562753915787,
10
+ "eval_rewards/margins": 0.045030828565359116,
11
+ "eval_rewards/rejected": -0.003865197068080306,
12
+ "eval_runtime": 112.8844,
13
  "eval_samples": 343,
14
+ "eval_samples_per_second": 3.039,
15
  "eval_steps_per_second": 0.381
16
  }