--- library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer base_model: NorLLM-AI/NorMistral-7B datasets: - hugodk-sch/aftonposten_title_prefs model-index: - name: norllm-ai-normistral-7b-align-scan results: [] --- # norllm-ai-normistral-7b-align-scan This model is a fine-tuned version of [data/norllm-ai-normistral-7b-sft-qlora](https://huggingface.co/data/norllm-ai-normistral-7b-sft-qlora) on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set: - Loss: 0.6292 - Rewards/chosen: 0.0553 - Rewards/rejected: 0.0226 - Rewards/accuracies: 0.5166 - Rewards/margins: 0.0327 - Logps/rejected: -34.6659 - Logps/chosen: -31.2035 - Logits/rejected: -2.8063 - Logits/chosen: -2.8088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.1043 | 0.26 | 100 | 0.6260 | 0.0189 | -0.0071 | 0.5370 | 0.0260 | -34.7083 | -31.2554 | -2.8132 | -2.8159 | | 3.0672 | 0.52 | 200 | 0.6356 | 0.0453 | 0.0067 | 0.5627 | 0.0386 | -34.6886 | -31.2177 | -2.8107 | -2.8128 | | 1.2353 | 0.78 | 300 | 0.6302 | 0.0524 | 0.0270 | 0.5311 | 0.0254 | -34.6596 | -31.2076 | -2.8071 | -2.8097 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.1