--- library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer base_model: NorLLM-AI/NorMistral-7B datasets: - hugodk-sch/aftonposten_title_prefs model-index: - name: norllm-ai-normistral-7b-align-scan results: [] --- # norllm-ai-normistral-7b-align-scan This model is a fine-tuned version of [data/norllm-ai-normistral-7b-sft-qlora](https://huggingface.co/data/norllm-ai-normistral-7b-sft-qlora) on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set: - Loss: 0.4787 - Rewards/chosen: -0.2528 - Rewards/rejected: -0.4471 - Rewards/accuracies: 0.5602 - Rewards/margins: 0.1943 - Logps/rejected: -35.4433 - Logps/chosen: -31.7037 - Logits/rejected: -2.8306 - Logits/chosen: -2.8338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.4852 | 0.26 | 100 | 0.4894 | 0.0835 | 0.0380 | 0.5689 | 0.0456 | -34.6349 | -31.1432 | -2.8023 | -2.8050 | | 0.4094 | 0.52 | 200 | 0.4824 | 0.1068 | 0.0177 | 0.5432 | 0.0891 | -34.6687 | -31.1045 | -2.8122 | -2.8150 | | 0.3408 | 0.78 | 300 | 0.4827 | 0.0196 | -0.0908 | 0.5694 | 0.1105 | -34.8496 | -31.2497 | -2.8188 | -2.8212 | | 0.1572 | 1.04 | 400 | 0.4798 | -0.0175 | -0.1496 | 0.5839 | 0.1321 | -34.9475 | -31.3117 | -2.8156 | -2.8172 | | 0.1463 | 1.3 | 500 | 0.4816 | -0.0382 | -0.1668 | 0.5843 | 0.1285 | -34.9761 | -31.3462 | -2.8282 | -2.8294 | | 0.1315 | 1.56 | 600 | 0.4786 | -0.0124 | -0.1617 | 0.5511 | 0.1493 | -34.9677 | -31.3031 | -2.8038 | -2.8065 | | 0.1119 | 1.82 | 700 | 0.4778 | -0.0846 | -0.2536 | 0.5893 | 0.1691 | -35.1209 | -31.4234 | -2.8174 | -2.8202 | | 0.0639 | 2.08 | 800 | 0.4746 | -0.1169 | -0.3129 | 0.5689 | 0.1961 | -35.2197 | -31.4772 | -2.8306 | -2.8335 | | 0.0635 | 2.34 | 900 | 0.4768 | -0.1886 | -0.3820 | 0.5777 | 0.1934 | -35.3348 | -31.5967 | -2.8313 | -2.8346 | | 0.0517 | 2.6 | 1000 | 0.4804 | -0.2063 | -0.3767 | 0.5544 | 0.1704 | -35.3260 | -31.6262 | -2.8305 | -2.8336 | | 0.0446 | 2.86 | 1100 | 0.4794 | -0.2379 | -0.4230 | 0.5689 | 0.1851 | -35.4032 | -31.6790 | -2.8298 | -2.8332 | | 0.0511 | 3.12 | 1200 | 0.4783 | -0.2347 | -0.4328 | 0.5806 | 0.1982 | -35.4196 | -31.6736 | -2.8297 | -2.8330 | | 0.0414 | 3.38 | 1300 | 0.4778 | -0.2496 | -0.4539 | 0.5660 | 0.2043 | -35.4547 | -31.6984 | -2.8309 | -2.8340 | | 0.0334 | 3.64 | 1400 | 0.4783 | -0.2495 | -0.4524 | 0.5777 | 0.2028 | -35.4521 | -31.6984 | -2.8308 | -2.8338 | | 0.0416 | 3.9 | 1500 | 0.4785 | -0.2460 | -0.4418 | 0.5631 | 0.1958 | -35.4345 | -31.6925 | -2.8303 | -2.8337 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.1