File size: 1,717 Bytes
3d27451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: NorLLM-AI/NorMistral-7B
datasets:
- generator
model-index:
- name: norllm-ai-normistral-7b-sft-qlora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# norllm-ai-normistral-7b-sft-qlora

This model is a fine-tuned version of [NorLLM-AI/NorMistral-7B](https://huggingface.co/NorLLM-AI/NorMistral-7B) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4403

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7274        | 1.0   | 274  | 1.9432          |
| 1.1514        | 2.0   | 549  | 1.7111          |
| 0.645         | 3.0   | 823  | 1.5109          |
| 0.4291        | 4.0   | 1098 | 1.4415          |
| 0.3392        | 4.99  | 1370 | 1.4403          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1