|
from typing import Any, Dict, List |
|
from transformers import Idefics2Processor, Idefics2ForConditionalGeneration |
|
import torch |
|
import logging |
|
from PIL import Image |
|
import requests |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.logger = logging.getLogger() |
|
self.logger.addHandler(logging.StreamHandler()) |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.processor = Idefics2Processor.from_pretrained(path) |
|
self.model = Idefics2ForConditionalGeneration.from_pretrained(path) |
|
self.model.to(self.device) |
|
self.logger.info("Initialisation finished!") |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
"""image = data.pop("inputs", data) |
|
self.logger.info("image") |
|
|
|
# process image |
|
inputs = self.processor(images=image, return_tensors="pt").to(self.device) |
|
self.logger.info("inputs") |
|
self.logger.info(f"{inputs.input_ids}") |
|
generated_ids = self.model.generate(**inputs) |
|
self.logger.info("generated") |
|
|
|
# run prediction |
|
generated_text = self.processor.batch_decode( |
|
generated_ids, skip_special_tokens=True |
|
) |
|
self.logger.info("decoded")""" |
|
|
|
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg" |
|
|
|
image_1 = data.pop("inputs", data) |
|
image_2 = Image.open(requests.get(url_2, stream=True).raw) |
|
images = [image_1, image_2] |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"text": "What’s the difference between these two images?", |
|
}, |
|
{"type": "image"}, |
|
{"type": "image"}, |
|
], |
|
} |
|
] |
|
|
|
self.model.to(self.device) |
|
|
|
|
|
text = self.processor.apply_chat_template(messages, add_generation_prompt=True) |
|
self.logger.info(text) |
|
|
|
|
|
inputs = self.processor(images=images, text=text, return_tensors="pt").to( |
|
self.device |
|
) |
|
self.logger.info("inputs") |
|
|
|
generated_text = self.model.generate(**inputs, max_new_tokens=500) |
|
self.logger.info("generated") |
|
generated_text = self.processor.batch_decode( |
|
generated_text, skip_special_tokens=True |
|
)[0] |
|
self.logger.info(f"Generated text: {generated_text}") |
|
|
|
|
|
return generated_text |
|
|