--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 datasets: - iamkaikai/amazing_logos_v4 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # Text-to-image finetuning - iamkaikai/amazing-logos-v4 This pipeline was finetuned from **runwayml/stable-diffusion-v1-5** on the **iamkaikai/amazing_logos_v4** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['Simple elegant logo for Grupo Altair Publicidad, Circle Lines Venezuela, Publishing, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("iamkaikai/amazing-logos-v4", torch_dtype=torch.float16) prompt = "Simple elegant logo for Grupo Altair Publicidad, Circle Lines Venezuela, Publishing, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 3 * Learning rate: 5e-07 * Batch size: 1 * Gradient accumulation steps: 1 * Image resolution: 512 * Mixed-precision: fp16 More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/iam-kai-kai/text2image-fine-tune/runs/838t61tw).