ianzh0's picture
clone from whisper-small-chinese_base repo, added onnx convereted version for in browser inference
3e3a71e
metadata
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Chinese Base
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs cmn_hans_cn
          type: google/fleurs
          config: cmn_hans_cn
          split: test
          args: cmn_hans_cn
        metrics:
          - name: Wer
            type: wer
            value: 16.643891773708663

Whisper Small Chinese Base

This model is a fine-tuned version of openai/whisper-small on the google/fleurs cmn_hans_cn dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3573
  • Wer: 16.6439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0005 76.0 1000 0.3573 16.6439
0.0002 153.0 2000 0.3897 16.9749
0.0001 230.0 3000 0.4125 17.2330
0.0001 307.0 4000 0.4256 17.2451
0.0001 384.0 5000 0.4330 17.2300

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2