File size: 16,020 Bytes
df6e9c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x136cdc670>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x136cf9200>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "num_timesteps": 1000000,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1681058687570107000,
    "learning_rate": 0.0007,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvZW52cy9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL29wdC9ob21lYnJldy9DYXNrcm9vbS9taW5pZm9yZ2UvYmFzZS9lbnZzL3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
    },
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHp7TPvtI9zyJOhQ/Hp7TPvtI9zyJOhQ/Hp7TPvtI9zyJOhQ/Hp7TPvtI9zyJOhQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEXPDPklNu7+07Is+j3aHv6J9or89xtK/U7w/vqwJr79j/7M/t72xPyFDoL8fbWs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAentM++0j3PIk6FD+uL6E8UIVFuw2vljwentM++0j3PIk6FD+uL6E8UIVFuw2vljwentM++0j3PIk6FD+uL6E8UIVFuw2vljwentM++0j3PIk6FD+uL6E8UIVFuw2vljyUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[0.4133157  0.03018617 0.5790182 ]\n [0.4133157  0.03018617 0.5790182 ]\n [0.4133157  0.03018617 0.5790182 ]\n [0.4133157  0.03018617 0.5790182 ]]",
        "desired_goal": "[[ 0.38173726 -1.463296    0.27329028]\n [-1.0583056  -1.269459   -1.6466748 ]\n [-0.18724184 -1.3674827   1.4062313 ]\n [ 1.3886021  -1.2520486   0.9196338 ]]",
        "observation": "[[ 0.4133157   0.03018617  0.5790182   0.01967606 -0.00301393  0.01839402]\n [ 0.4133157   0.03018617  0.5790182   0.01967606 -0.00301393  0.01839402]\n [ 0.4133157   0.03018617  0.5790182   0.01967606 -0.00301393  0.01839402]\n [ 0.4133157   0.03018617  0.5790182   0.01967606 -0.00301393  0.01839402]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATgEju8ZDuj3XuEs+hw8+PYHi3rx0W4E9zKLPvQRiEb7CjJw9VTNHPeIY6L1J7Sw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1943899e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01]]",
        "desired_goal": "[[-0.00248726  0.09094958  0.1989473 ]\n [ 0.04640153 -0.02720761  0.06316271]\n [-0.10138473 -0.14197546  0.07644035]\n [ 0.04863294 -0.11332871  0.16887392]]",
        "observation": "[[ 3.8439669e-02 -2.1943899e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiXjr/Ntl1b+UhpRSlIwBbJRLMowBdJRHQIx/ghr30wt1fZQoaAZoCWgPQwj+Cpkrg2ruv5SGlFKUaBVLMmgWR0CMfy1dgOSXdX2UKGgGaAloD0MIjUXT2cng6L+UhpRSlGgVSzJoFkdAjH7ZOSGJvnV9lChoBmgJaA9DCDW4rS08b/G/lIaUUpRoFUsyaBZHQIx+hWxQizN1fZQoaAZoCWgPQwhpkIKnkGvzv5SGlFKUaBVLMmgWR0CMgQM3qAz6dX2UKGgGaAloD0MIt9CVCFR/77+UhpRSlGgVSzJoFkdAjICuafBeonV9lChoBmgJaA9DCABzLVqAtum/lIaUUpRoFUsyaBZHQIyAWoLofSx1fZQoaAZoCWgPQwjt2AjE63rov5SGlFKUaBVLMmgWR0CMgAbDuSfUdX2UKGgGaAloD0MITS1b64sE9L+UhpRSlGgVSzJoFkdAjIKOC5EtunV9lChoBmgJaA9DCBk5C3va4de/lIaUUpRoFUsyaBZHQIyCOTxG2Cx1fZQoaAZoCWgPQwg5DVGFP0Prv5SGlFKUaBVLMmgWR0CMgeUoKD02dX2UKGgGaAloD0MIL/zgfOrY5L+UhpRSlGgVSzJoFkdAjIGRQrMC93V9lChoBmgJaA9DCMfzGVBvRum/lIaUUpRoFUsyaBZHQIyED7ZWaMJ1fZQoaAZoCWgPQwjhDWlU4GThv5SGlFKUaBVLMmgWR0CMg7rtVrAQdX2UKGgGaAloD0MImzdOCvMe5L+UhpRSlGgVSzJoFkdAjINnDR+jM3V9lChoBmgJaA9DCOqvV1hwP/W/lIaUUpRoFUsyaBZHQIyDExj8UEh1fZQoaAZoCWgPQwhZGY18XvHqv5SGlFKUaBVLMmgWR0CMhZuF6AvtdX2UKGgGaAloD0MIllmEYivo5L+UhpRSlGgVSzJoFkdAjIVGr0aqCHV9lChoBmgJaA9DCOGbps8OuNm/lIaUUpRoFUsyaBZHQIyE8uWa+ex1fZQoaAZoCWgPQwinyYy3ld7iv5SGlFKUaBVLMmgWR0CMhJ8ZUDMedX2UKGgGaAloD0MIbolccAb/5b+UhpRSlGgVSzJoFkdAjIcXsw+MZXV9lChoBmgJaA9DCJQu/UtSWfa/lIaUUpRoFUsyaBZHQIyGwvnKW9l1fZQoaAZoCWgPQwgxCKwcWmTtv5SGlFKUaBVLMmgWR0CMhm8h9srNdX2UKGgGaAloD0MI/n+cMGH097+UhpRSlGgVSzJoFkdAjIYbT+ee4HV9lChoBmgJaA9DCJwwYTQr2+i/lIaUUpRoFUsyaBZHQIyIotWdVed1fZQoaAZoCWgPQwiGyypsBrjVv5SGlFKUaBVLMmgWR0CMiE3uNPxhdX2UKGgGaAloD0MIDk5Ev7b+6L+UhpRSlGgVSzJoFkdAjIf6FEiMYXV9lChoBmgJaA9DCN5X5ULlX+O/lIaUUpRoFUsyaBZHQIyHpkupS751fZQoaAZoCWgPQwgN38K68W7rv5SGlFKUaBVLMmgWR0CMiiXeFcptdX2UKGgGaAloD0MIlYJuL2nM8b+UhpRSlGgVSzJoFkdAjInRSYPXkHV9lChoBmgJaA9DCExxVdl3Rdy/lIaUUpRoFUsyaBZHQIyJfYcvM8p1fZQoaAZoCWgPQwheK6G7JM71v5SGlFKUaBVLMmgWR0CMiSnQ6ZH/dX2UKGgGaAloD0MIvRx23zE86r+UhpRSlGgVSzJoFkdAjIvCTUy57XV9lChoBmgJaA9DCLsJvmn6LPi/lIaUUpRoFUsyaBZHQIyLbUI9kjJ1fZQoaAZoCWgPQwiAn3HhQEjev5SGlFKUaBVLMmgWR0CMixleWv8qdX2UKGgGaAloD0MIyEEJM23/2L+UhpRSlGgVSzJoFkdAjIrFkhA4XHV9lChoBmgJaA9DCB42kZkLnPa/lIaUUpRoFUsyaBZHQIyNT1Iy0rt1fZQoaAZoCWgPQwj8471qZQL1v5SGlFKUaBVLMmgWR0CMjPqj8DSxdX2UKGgGaAloD0MIWoP3VblQ77+UhpRSlGgVSzJoFkdAjIymuLaVU3V9lChoBmgJaA9DCOxRuB6F6+2/lIaUUpRoFUsyaBZHQIyMUvRJEpl1fZQoaAZoCWgPQwh4RIXq5iLzv5SGlFKUaBVLMmgWR0CMjtpoK2KEdX2UKGgGaAloD0MIw7rx7sjY7b+UhpRSlGgVSzJoFkdAjI6FvAGjbnV9lChoBmgJaA9DCCMVxhaCHOm/lIaUUpRoFUsyaBZHQIyOMfxMFll1fZQoaAZoCWgPQwhUOIJUih32v5SGlFKUaBVLMmgWR0CMjd4Ju2qldX2UKGgGaAloD0MIjx1U4jqG9b+UhpRSlGgVSzJoFkdAjJBhEroW6HV9lChoBmgJaA9DCL6kMVpHVem/lIaUUpRoFUsyaBZHQIyQDE5yU9p1fZQoaAZoCWgPQwh07KAS13H6v5SGlFKUaBVLMmgWR0CMj7hvR7Z4dX2UKGgGaAloD0MI/d07akwI6r+UhpRSlGgVSzJoFkdAjI9kfcN6PnV9lChoBmgJaA9DCCAm4UIeQQDAlIaUUpRoFUsyaBZHQIyR4Hqu8sd1fZQoaAZoCWgPQwi3YRQEj28AwJSGlFKUaBVLMmgWR0CMkYvCdjG2dX2UKGgGaAloD0MIhugQOBKo9r+UhpRSlGgVSzJoFkdAjJE3vYvnKXV9lChoBmgJaA9DCLaBO1CnfPC/lIaUUpRoFUsyaBZHQIyQ5AIIF/x1fZQoaAZoCWgPQwiw/s9hvrzZv5SGlFKUaBVLMmgWR0CMk25xzaK2dX2UKGgGaAloD0MIzEI7p1ng8L+UhpRSlGgVSzJoFkdAjJMZsj3VTnV9lChoBmgJaA9DCO8dNSbEHPC/lIaUUpRoFUsyaBZHQIySxdyDIzZ1fZQoaAZoCWgPQwg3VIzzN6Hvv5SGlFKUaBVLMmgWR0CMknH5rP+odX2UKGgGaAloD0MImtGPhlNm9b+UhpRSlGgVSzJoFkdAjJT5lOGj9HV9lChoBmgJaA9DCOFdLuI7seS/lIaUUpRoFUsyaBZHQIyUpNCZ4Od1fZQoaAZoCWgPQwhklj0JbM72v5SGlFKUaBVLMmgWR0CMlFD8cdYGdX2UKGgGaAloD0MIg4b+CS6W9b+UhpRSlGgVSzJoFkdAjJP9IoVmBnV9lChoBmgJaA9DCHTOT3EceOS/lIaUUpRoFUsyaBZHQIyWibc45tF1fZQoaAZoCWgPQwjF46JaRJTiv5SGlFKUaBVLMmgWR0CMljS5y2hJdX2UKGgGaAloD0MInNuEe2Xe9b+UhpRSlGgVSzJoFkdAjJXg31jAi3V9lChoBmgJaA9DCFBVoYFYNuO/lIaUUpRoFUsyaBZHQIyVjRIBikR1fZQoaAZoCWgPQwhFLGLYYewAwJSGlFKUaBVLMmgWR0CMmAwGnn+ydX2UKGgGaAloD0MIBmfw94sZAsCUhpRSlGgVSzJoFkdAjJe3SBshxHV9lChoBmgJaA9DCFA6kWCqGfG/lIaUUpRoFUsyaBZHQIyXYzN2TxJ1fZQoaAZoCWgPQwhxyXGndLDmv5SGlFKUaBVLMmgWR0CMlw9ic5KfdX2UKGgGaAloD0MIiesYV1yc5b+UhpRSlGgVSzJoFkdAjJmN+9allHV9lChoBmgJaA9DCJDY7h6ge/a/lIaUUpRoFUsyaBZHQIyZOS8rZrZ1fZQoaAZoCWgPQwgM5q+QubLjv5SGlFKUaBVLMmgWR0CMmOTsY2sJdX2UKGgGaAloD0MIUMjO29js6L+UhpRSlGgVSzJoFkdAjJiRGc4HX3V9lChoBmgJaA9DCHMPCd/7m/C/lIaUUpRoFUsyaBZHQIybFyJbdJt1fZQoaAZoCWgPQwgCnN7F+3H9v5SGlFKUaBVLMmgWR0CMmsI5YHPedX2UKGgGaAloD0MIh/iHLT3a8b+UhpRSlGgVSzJoFkdAjJpuclPac3V9lChoBmgJaA9DCKeufJbnQeq/lIaUUpRoFUsyaBZHQIyaGrMkhRt1fZQoaAZoCWgPQwhT6/1GO+7pv5SGlFKUaBVLMmgWR0CMnJ/iHZbqdX2UKGgGaAloD0MIf7+YLVmV9L+UhpRSlGgVSzJoFkdAjJxK//NqxnV9lChoBmgJaA9DCF/Rrdf0oN6/lIaUUpRoFUsyaBZHQIyb9zIV/MJ1fZQoaAZoCWgPQwgmqyLcZNTpv5SGlFKUaBVLMmgWR0CMm6NdZ7ojdX2UKGgGaAloD0MISwaAKm7c/L+UhpRSlGgVSzJoFkdAjJ4ojfNzKnV9lChoBmgJaA9DCNk+5C1XP+S/lIaUUpRoFUsyaBZHQIyd07+1jRV1fZQoaAZoCWgPQwgouFhRg+nsv5SGlFKUaBVLMmgWR0CMnX/m1YyPdX2UKGgGaAloD0MIMzSeCOI89b+UhpRSlGgVSzJoFkdAjJ0sG5c1O3V9lChoBmgJaA9DCOT09XzN8vO/lIaUUpRoFUsyaBZHQIyfsC7sfJV1fZQoaAZoCWgPQwgAxF29isz2v5SGlFKUaBVLMmgWR0CMn1t1IRRNdX2UKGgGaAloD0MIMLlRZK1h+r+UhpRSlGgVSzJoFkdAjJ8HkLhJiHV9lChoBmgJaA9DCOc1donqLfG/lIaUUpRoFUsyaBZHQIyes8YAKfF1fZQoaAZoCWgPQwgdVrjlI6nhv5SGlFKUaBVLMmgWR0CMoTechC+ldX2UKGgGaAloD0MIM4y7QbTW4b+UhpRSlGgVSzJoFkdAjKDiy6cy33V9lChoBmgJaA9DCGzOwTOhSea/lIaUUpRoFUsyaBZHQIygju8brC51fZQoaAZoCWgPQwj9hokGKbjzv5SGlFKUaBVLMmgWR0CMoDsWweNldX2UKGgGaAloD0MILZW3I5xW+b+UhpRSlGgVSzJoFkdAjKK9a2WpqHV9lChoBmgJaA9DCGtFm+PcJuG/lIaUUpRoFUsyaBZHQIyiaKk2xY91fZQoaAZoCWgPQwjgaTLjbaXmv5SGlFKUaBVLMmgWR0CMohTWoWHldX2UKGgGaAloD0MIFFysqMG067+UhpRSlGgVSzJoFkdAjKHBAGB4EHV9lChoBmgJaA9DCKN5AIv8eva/lIaUUpRoFUsyaBZHQIykQ/JNj9Z1fZQoaAZoCWgPQwhpjqz8Mpj2v5SGlFKUaBVLMmgWR0CMo+8kD6nBdX2UKGgGaAloD0MI34rEBDV827+UhpRSlGgVSzJoFkdAjKObcfvF33V9lChoBmgJaA9DCPZ698d71du/lIaUUpRoFUsyaBZHQIyjR4GD+R51ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 50000,
    "n_steps": 5,
    "gamma": 0.99,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false,
    "observation_space": {
        ":type:": "<class 'gym.spaces.dict.Dict'>",
        ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
        "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_np_random": null
    },
    "n_envs": 4
}