rpand002 commited on
Commit
6268032
Β·
verified Β·
1 Parent(s): a5696a6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -17
README.md CHANGED
@@ -13,7 +13,7 @@ base_model:
13
  # Granite-3.1-2B-Instruct
14
 
15
  **Model Summary:**
16
- Granite-3.1-2B-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-2B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.
17
 
18
  - **Developers:** Granite Team, IBM
19
  - **GitHub Repository:** [ibm-granite/granite-3.1-language-models](https://github.com/ibm-granite/granite-3.1-language-models)
@@ -56,7 +56,7 @@ import torch
56
  from transformers import AutoModelForCausalLM, AutoTokenizer
57
 
58
  device = "auto"
59
- model_path = "ibm-granite/Granite-3.1-2B-instruct"
60
  tokenizer = AutoTokenizer.from_pretrained(model_path)
61
  # drop device_map if running on CPU
62
  model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
@@ -82,21 +82,21 @@ Granite-3.1-2B-Instruct is based on a decoder-only dense transformer architectur
82
 
83
  | Model | 2B Dense | 8B Dense | 1B MoE | 3B MoE |
84
  | :-------- | :--------| :-------- | :------| :------|
85
- | Embedding size | 2048 | **4096** | 1024 | 1536 |
86
- | Number of layers | 40 | **40** | 24 | 32 |
87
- | Attention head size | 64 | **128** | 64 | 64 |
88
- | Number of attention heads | 32 | **32** | 16 | 24 |
89
- | Number of KV heads | 8 | **8** | 8 | 8 |
90
- | MLP hidden size | 8192 | **12800** | 512 | 512 |
91
- | MLP activation | SwiGLU | **SwiGLU** | SwiGLU | SwiGLU |
92
- | Number of experts | β€” | **β€”** | 32 | 40 |
93
- | MoE TopK | β€” | **β€”** | 8 | 8 |
94
- | Initialization std | 0.1 | **0.1** | 0.1 | 0.1 |
95
- | Sequence length | 128K | **128K** | 128K | 128K |
96
- | Position embedding | RoPE | **RoPE** | RoPE | RoPE |
97
- | # Parameters | 2.5B | **8.1B** | 1.3B | 3.3B |
98
- | # Active parameters | 2.5B | **8.1B** | 400M | 800M |
99
- | # Training tokens | 12T | **12T** | 10T | 10T |
100
 
101
  **Training Data:**
102
  Overall, our SFT data is largely comprised of three key sources: (1) publicly available datasets with permissive license, (2) internal synthetic data targeting specific capabilities including long-context tasks, and (3) very small amounts of human-curated data. A detailed attribution of datasets can be found in the [Granite 3.0 Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf), [Granite 3.1 Technical Report (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).
 
13
  # Granite-3.1-2B-Instruct
14
 
15
  **Model Summary:**
16
+ Granite-3.1-2B-Instruct is a 2B parameter long-context instruct model finetuned from Granite-3.1-2B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.
17
 
18
  - **Developers:** Granite Team, IBM
19
  - **GitHub Repository:** [ibm-granite/granite-3.1-language-models](https://github.com/ibm-granite/granite-3.1-language-models)
 
56
  from transformers import AutoModelForCausalLM, AutoTokenizer
57
 
58
  device = "auto"
59
+ model_path = "ibm-granite/granite-3.1-2b-instruct"
60
  tokenizer = AutoTokenizer.from_pretrained(model_path)
61
  # drop device_map if running on CPU
62
  model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
 
82
 
83
  | Model | 2B Dense | 8B Dense | 1B MoE | 3B MoE |
84
  | :-------- | :--------| :-------- | :------| :------|
85
+ | Embedding size | **2048** | 4096 | 1024 | 1536 |
86
+ | Number of layers | **40** | 40 | 24 | 32 |
87
+ | Attention head size | **64** | 128 | 64 | 64 |
88
+ | Number of attention heads | **32** | 32 | 16 | 24 |
89
+ | Number of KV heads | **8** | 8 | 8 | 8 |
90
+ | MLP hidden size | **8192** | 12800 | 512 | 512 |
91
+ | MLP activation | **SwiGLU** | SwiGLU | SwiGLU | SwiGLU |
92
+ | Number of experts | **β€”** | β€” | 32 | 40 |
93
+ | MoE TopK | **β€”** | β€” | 8 | 8 |
94
+ | Initialization std | **0.1** | 0.1 | 0.1 | 0.1 |
95
+ | Sequence length | **128K** | 128K | 128K | 128K |
96
+ | Position embedding | **RoPE** | RoPE | RoPE | RoPE |
97
+ | # Parameters | **2.5B** | 8.1B | 1.3B | 3.3B |
98
+ | # Active parameters | **2.5B** | 8.1B | 400M | 800M |
99
+ | # Training tokens | **12T** | 12T | 10T | 10T |
100
 
101
  **Training Data:**
102
  Overall, our SFT data is largely comprised of three key sources: (1) publicly available datasets with permissive license, (2) internal synthetic data targeting specific capabilities including long-context tasks, and (3) very small amounts of human-curated data. A detailed attribution of datasets can be found in the [Granite 3.0 Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf), [Granite 3.1 Technical Report (coming soon)](https://huggingface.co/collections/ibm-granite/granite-31-language-models-6751dbbf2f3389bec5c6f02d), and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).