amezasor's picture
Initial model card version
7655f7f verified
|
raw
history blame
13.7 kB
metadata
pipeline_tag: text-generation
inference: true
license: apache-2.0
datasets:
  - codeparrot/github-code-clean
  - bigcode/starcoderdata
  - togethercomputer/RedPajama-Data-V2
  - togethercomputer/RedPajama-Data-1T
  - allenai/peS2o
  - open-web-math/open-web-math
  - EleutherAI/proof-pile-2
  - nvidia/HelpSteer
  - garage-bAInd/Open-Platypus
  - mosaicml/dolly_hhrlhf
  - mosaicml/instruct-v3
  - conceptofmind/FLAN_2022
  - KnutJaegersberg/longinstruct
  - bigcode/oasst-octopack
  - CohereForAI/xP3x
  - math-ai/StackMathQA
  - math-ai/TemplateGSM
  - bugdaryan/sql-create-context-instruction
  - glaiveai/glaive-function-calling-v2
  - glaiveai/glaive-code-assistant-v3
  - cognitivecomputations/dolphin-coder
  - glaiveai/glaive-code-assistant
  - TokenBender/code_instructions_122k_alpaca_style
  - TIGER-Lab/MathInstruct
  - meta-math/MetaMathQA
  - tiedong/goat
  - CohereForAI/xP3x
  - bigcode/commitpack
  - bigcode/commitpackft
  - HuggingFaceTB/cosmopedia
  - deepmind/code_contests
  - ise-uiuc/Magicoder-Evol-Instruct-110K
  - ise-uiuc/Magicoder-OSS-Instruct-75K
  - theblackcat102/evol-codealpaca-v1
  - ajibawa-2023/Code-290k-ShareGPT
  - Locutusque/UltraTextbooks-2.0
  - teknium/OpenHermes-2.5
  - stingning/ultrachat
metrics:
  - code_eval
library_name: transformers
tags:
  - code
model-index:
  - name: granite-3b-code-base
    results:
      - task:
          type: text-generation
        dataset:
          type: openai_humaneval
          name: HumanEval
        metrics:
          - name: pass@1
            type: pass@1
            value: 34.1
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: evalplus/humanevalplus
          name: HumanEval+
        metrics:
          - name: pass@1
            type: pass@1
            value: 29.9
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: mbpp
          name: MBPP
        metrics:
          - name: pass@1
            type: pass@1
            value: 36
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: evalplus/mbppplus
          name: MBPP+
        metrics:
          - name: pass@1
            type: pass@1
            value: 45.1
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalSynthesis(Python)
        metrics:
          - name: pass@1
            type: pass@1
            value: 36
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalSynthesis(JavaScript)
        metrics:
          - name: pass@1
            type: pass@1
            value: 37.2
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalSynthesis(Java)
        metrics:
          - name: pass@1
            type: pass@1
            value: 40.9
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalSynthesis(Go)
        metrics:
          - name: pass@1
            type: pass@1
            value: 26.2
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalSynthesis(C++)
        metrics:
          - name: pass@1
            type: pass@1
            value: 35.4
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalSynthesis(Rust)
        metrics:
          - name: pass@1
            type: pass@1
            value: 22
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalExplain(Python)
        metrics:
          - name: pass@1
            type: pass@1
            value: 25
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalExplain(JavaScript)
        metrics:
          - name: pass@1
            type: pass@1
            value: 18.9
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalExplain(Java)
        metrics:
          - name: pass@1
            type: pass@1
            value: 29.9
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalExplain(Go)
        metrics:
          - name: pass@1
            type: pass@1
            value: 17.1
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalExplain(C++)
        metrics:
          - name: pass@1
            type: pass@1
            value: 26.8
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalExplain(Rust)
        metrics:
          - name: pass@1
            type: pass@1
            value: 14
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalFix(Python)
        metrics:
          - name: pass@1
            type: pass@1
            value: 18.3
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalFix(JavaScript)
        metrics:
          - name: pass@1
            type: pass@1
            value: 23.2
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalFix(Java)
        metrics:
          - name: pass@1
            type: pass@1
            value: 29.9
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalFix(Go)
        metrics:
          - name: pass@1
            type: pass@1
            value: 24.4
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalFix(C++)
        metrics:
          - name: pass@1
            type: pass@1
            value: 16.5
            veriefied: false
      - task:
          type: text-generation
        dataset:
          type: bigcode/humanevalpack
          name: HumanEvalFix(Rust)
        metrics:
          - name: pass@1
            type: pass@1
            value: 3.7
            veriefied: false

Granite 3B Code Base

Model Summary

Granite 3B Code Base model is a decoder-only code model designed for code generative tasks (e.g., code generation, code explanation, code fixing). It was trained from scratch on 4 trillion tokens sourced from 116 programming languages, ensuring a comprehensive understanding of programming languages and syntax.

Usage

Intended use

Prominent enterprise use cases of LLMs in software engineering productivity include code generation, code explanation, code fixing, generating unit tests, generating documentation, addressing technical debt issues, vulnerability detection, code translation, and more. All Granite Code Base models, including the 3B parameters model, are able to handle these tasks as they were trained on a large amount of code data from 116 programming languages.

Generation

Before proceeding, you need to install the necessary dependencies. You can do this by running the following command:

pip install -r requirements.txt

This is a simple example of how to use Granite Code Base 3B model.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "ibm-granite/granite-3b-code-base"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cuda")
model.eval()

input_text = "def generate():"

input_tokens = tokenizer(input_text, return_tensors="pt")
for i in input_tokens:
    input_tokens[i] = input_tokens[i].cuda()

output = model.generate(**input_tokens)
output = tokenizer.batch_decode(output)
for i in output:
    print(output)

Fill-in-the-middle

Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:

input_text = "<fim_prefix>def print_hello_world():\n    <fim_suffix>\n    print('Hello world!')<fim_middle>"
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

Training Data

  • Data Collection and Filtering: Pretraining code data is sourced from a combination of publicly available datasets (e.g., GitHub Code Clean, Starcoder data), and additional public code repositories and issues from GitHub. We filter raw data to retain a list of 116 programming languages. After language filtering, we also filter out low-quality code.
  • Exact and Fuzzy Deduplication: We adopt an aggressive deduplication strategy that includes both exact and fuzzy deduplication to remove documents having (near) identical code content.
  • HAP, PII, Malware Filtering: We apply a HAP content filter that reduces models' likelihood of generating hateful, abusive, or profane language. We also make sure to redact Personally Identifiable Information (PII) by replacing PII content (e.g., names, email addresses, keys, passwords) with corresponding tokens (e.g., ⟨NAME⟩, ⟨EMAIL⟩, ⟨KEY⟩, ⟨PASSWORD⟩). Moreover, we scan all datasets using ClamAV to identify and remove instances of malware in the source code.
  • Natural Language Datasets: In addition to collecting code data for model training, we curate several publicly available high-quality natural language datasets to improve models' proficiency in language understanding and mathematical reasoning. Unlike the code data, we do not deduplicate these datasets.

Infrastructure

We train the Granite Code models using two of IBM’s super computing clusters, namely Vela and Blue Vela, both outfitted with NVIDIA A100 and H100 GPUs respectively. These clusters provide a scalable and efficient infrastructure for training our models over thousands of GPUs.

Limitations

Large Language Models are often prone to generating incorrect information, typically referred to as hallucinations. Granite 3B Code Base model is not the exception in this regard. Even though this model is suited for code-related tasks as it is trained on source code from 116 programming languages, the generated code is not guaranteed to work as intended. It can be inefficient and contain bugs or exploits. Moreover, Granite Code Base models are not instruction-following models. Thus, commands like "Write a function that computes the square root" may not work well.

Citation

@misc{granite-models,
  author = {author 1, author2, ...},
  title = {Granite Code Large Language Models: IBM Foundation Models for Code},
  journal = {},
  volume = {},
  year = {2024},
  url = {https://arxiv.org/abs/0000.00000},
}