Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,852 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- ar
|
5 |
+
- cs
|
6 |
+
- de
|
7 |
+
- es
|
8 |
+
- fr
|
9 |
+
- it
|
10 |
+
- ja
|
11 |
+
- ko
|
12 |
+
- nl
|
13 |
+
- pt
|
14 |
+
- zh
|
15 |
+
license: apache-2.0
|
16 |
+
library_name: transformers
|
17 |
+
tags:
|
18 |
+
- language
|
19 |
+
- granite
|
20 |
+
- embeddings
|
21 |
+
- multilingual
|
22 |
+
model-index:
|
23 |
+
- name: ibm-granite/granite-embedding-278m-multilingual
|
24 |
+
results:
|
25 |
+
- dataset:
|
26 |
+
type: miracl/mmteb-miracl
|
27 |
+
name: Miracl (en)
|
28 |
+
config: en
|
29 |
+
split: dev
|
30 |
+
task:
|
31 |
+
type: Retrieval
|
32 |
+
metrics:
|
33 |
+
- type: ndcg_at_1
|
34 |
+
value: 0.45557
|
35 |
+
- type: ndcg_at_10
|
36 |
+
value: 0.49372
|
37 |
+
- type: ndcg_at_100
|
38 |
+
value: 0.5728
|
39 |
+
- type: ndcg_at_1000
|
40 |
+
value: 0.59187
|
41 |
+
- type: ndcg_at_20
|
42 |
+
value: 0.52863
|
43 |
+
- type: ndcg_at_3
|
44 |
+
value: 0.43969
|
45 |
+
- type: ndcg_at_5
|
46 |
+
value: 0.45551
|
47 |
+
- type: recall_at_1
|
48 |
+
value: 0.21785
|
49 |
+
- type: recall_at_10
|
50 |
+
value: 0.59513
|
51 |
+
- type: recall_at_100
|
52 |
+
value: 0.85785
|
53 |
+
- type: recall_at_1000
|
54 |
+
value: 0.96041
|
55 |
+
- type: recall_at_20
|
56 |
+
value: 0.69357
|
57 |
+
- type: recall_at_3
|
58 |
+
value: 0.40403
|
59 |
+
- type: recall_at_5
|
60 |
+
value: 0.48499
|
61 |
+
- dataset:
|
62 |
+
type: miracl/mmteb-miracl
|
63 |
+
name: Miracl (ar)
|
64 |
+
config: ar
|
65 |
+
split: dev
|
66 |
+
task:
|
67 |
+
type: Retrieval
|
68 |
+
metrics:
|
69 |
+
- type: ndcg_at_1
|
70 |
+
value: 0.57459
|
71 |
+
- type: ndcg_at_10
|
72 |
+
value: 0.64238
|
73 |
+
- type: ndcg_at_100
|
74 |
+
value: 0.6867
|
75 |
+
- type: ndcg_at_1000
|
76 |
+
value: 0.6951
|
77 |
+
- type: ndcg_at_20
|
78 |
+
value: 0.66455
|
79 |
+
- type: ndcg_at_3
|
80 |
+
value: 0.58162
|
81 |
+
- type: ndcg_at_5
|
82 |
+
value: 0.60831
|
83 |
+
- type: recall_at_1
|
84 |
+
value: 0.38064
|
85 |
+
- type: recall_at_10
|
86 |
+
value: 0.75098
|
87 |
+
- type: recall_at_100
|
88 |
+
value: 0.91203
|
89 |
+
- type: recall_at_1000
|
90 |
+
value: 0.96706
|
91 |
+
- type: recall_at_20
|
92 |
+
value: 0.81978
|
93 |
+
- type: recall_at_3
|
94 |
+
value: 0.58618
|
95 |
+
- type: recall_at_5
|
96 |
+
value: 0.66353
|
97 |
+
- dataset:
|
98 |
+
type: miracl/mmteb-miracl
|
99 |
+
name: Miracl (bn)
|
100 |
+
config: bn
|
101 |
+
split: dev
|
102 |
+
task:
|
103 |
+
type: Retrieval
|
104 |
+
metrics:
|
105 |
+
- type: ndcg_at_1
|
106 |
+
value: 0.60341
|
107 |
+
- type: ndcg_at_10
|
108 |
+
value: 0.68055
|
109 |
+
- type: ndcg_at_100
|
110 |
+
value: 0.72008
|
111 |
+
- type: ndcg_at_1000
|
112 |
+
value: 0.72716
|
113 |
+
- type: ndcg_at_20
|
114 |
+
value: 0.69914
|
115 |
+
- type: ndcg_at_3
|
116 |
+
value: 0.60805
|
117 |
+
- type: ndcg_at_5
|
118 |
+
value: 0.64486
|
119 |
+
- type: recall_at_1
|
120 |
+
value: 0.37948
|
121 |
+
- type: recall_at_10
|
122 |
+
value: 0.80609
|
123 |
+
- type: recall_at_100
|
124 |
+
value: 0.94305
|
125 |
+
- type: recall_at_1000
|
126 |
+
value: 0.98625
|
127 |
+
- type: recall_at_20
|
128 |
+
value: 0.86141
|
129 |
+
- type: recall_at_3
|
130 |
+
value: 0.61095
|
131 |
+
- type: recall_at_5
|
132 |
+
value: 0.71316
|
133 |
+
- dataset:
|
134 |
+
type: miracl/mmteb-miracl
|
135 |
+
name: Miracl (de)
|
136 |
+
config: de
|
137 |
+
split: dev
|
138 |
+
task:
|
139 |
+
type: Retrieval
|
140 |
+
metrics:
|
141 |
+
- type: ndcg_at_1
|
142 |
+
value: 0.45574
|
143 |
+
- type: ndcg_at_10
|
144 |
+
value: 0.48123
|
145 |
+
- type: ndcg_at_100
|
146 |
+
value: 0.56049
|
147 |
+
- type: ndcg_at_1000
|
148 |
+
value: 0.57979
|
149 |
+
- type: ndcg_at_20
|
150 |
+
value: 0.51785
|
151 |
+
- type: ndcg_at_3
|
152 |
+
value: 0.41243
|
153 |
+
- type: ndcg_at_5
|
154 |
+
value: 0.4386
|
155 |
+
- type: recall_at_1
|
156 |
+
value: 0.20401
|
157 |
+
- type: recall_at_10
|
158 |
+
value: 0.58779
|
159 |
+
- type: recall_at_100
|
160 |
+
value: 0.8584
|
161 |
+
- type: recall_at_1000
|
162 |
+
value: 0.97364
|
163 |
+
- type: recall_at_20
|
164 |
+
value: 0.69061
|
165 |
+
- type: recall_at_3
|
166 |
+
value: 0.36573
|
167 |
+
- type: recall_at_5
|
168 |
+
value: 0.47495
|
169 |
+
- dataset:
|
170 |
+
type: miracl/mmteb-miracl
|
171 |
+
name: Miracl (es)
|
172 |
+
config: es
|
173 |
+
split: dev
|
174 |
+
task:
|
175 |
+
type: Retrieval
|
176 |
+
metrics:
|
177 |
+
- type: ndcg_at_1
|
178 |
+
value: 0.5571
|
179 |
+
- type: ndcg_at_10
|
180 |
+
value: 0.49688
|
181 |
+
- type: ndcg_at_100
|
182 |
+
value: 0.60493
|
183 |
+
- type: ndcg_at_1000
|
184 |
+
value: 0.62922
|
185 |
+
- type: ndcg_at_20
|
186 |
+
value: 0.54438
|
187 |
+
- type: ndcg_at_3
|
188 |
+
value: 0.47981
|
189 |
+
- type: ndcg_at_5
|
190 |
+
value: 0.46584
|
191 |
+
- type: recall_at_1
|
192 |
+
value: 0.1638
|
193 |
+
- type: recall_at_10
|
194 |
+
value: 0.54155
|
195 |
+
- type: recall_at_100
|
196 |
+
value: 0.85136
|
197 |
+
- type: recall_at_1000
|
198 |
+
value: 0.96951
|
199 |
+
- type: recall_at_20
|
200 |
+
value: 0.65329
|
201 |
+
- type: recall_at_3
|
202 |
+
value: 0.31503
|
203 |
+
- type: recall_at_5
|
204 |
+
value: 0.40356
|
205 |
+
- dataset:
|
206 |
+
type: miracl/mmteb-miracl
|
207 |
+
name: Miracl (fa)
|
208 |
+
config: fa
|
209 |
+
split: dev
|
210 |
+
task:
|
211 |
+
type: Retrieval
|
212 |
+
metrics:
|
213 |
+
- type: ndcg_at_1
|
214 |
+
value: 0.39873
|
215 |
+
- type: ndcg_at_10
|
216 |
+
value: 0.50226
|
217 |
+
- type: ndcg_at_100
|
218 |
+
value: 0.56517
|
219 |
+
- type: ndcg_at_1000
|
220 |
+
value: 0.57967
|
221 |
+
- type: ndcg_at_20
|
222 |
+
value: 0.5292
|
223 |
+
- type: ndcg_at_3
|
224 |
+
value: 0.42738
|
225 |
+
- type: ndcg_at_5
|
226 |
+
value: 0.45843
|
227 |
+
- type: recall_at_1
|
228 |
+
value: 0.25369
|
229 |
+
- type: recall_at_10
|
230 |
+
value: 0.63776
|
231 |
+
- type: recall_at_100
|
232 |
+
value: 0.87686
|
233 |
+
- type: recall_at_1000
|
234 |
+
value: 0.9671
|
235 |
+
- type: recall_at_20
|
236 |
+
value: 0.72099
|
237 |
+
- type: recall_at_3
|
238 |
+
value: 0.43808
|
239 |
+
- type: recall_at_5
|
240 |
+
value: 0.52378
|
241 |
+
- dataset:
|
242 |
+
type: miracl/mmteb-miracl
|
243 |
+
name: Miracl (fi)
|
244 |
+
config: fi
|
245 |
+
split: dev
|
246 |
+
task:
|
247 |
+
type: Retrieval
|
248 |
+
metrics:
|
249 |
+
- type: ndcg_at_1
|
250 |
+
value: 0.60818
|
251 |
+
- type: ndcg_at_10
|
252 |
+
value: 0.6746
|
253 |
+
- type: ndcg_at_100
|
254 |
+
value: 0.71516
|
255 |
+
- type: ndcg_at_1000
|
256 |
+
value: 0.7218
|
257 |
+
- type: ndcg_at_20
|
258 |
+
value: 0.69692
|
259 |
+
- type: ndcg_at_3
|
260 |
+
value: 0.6006
|
261 |
+
- type: ndcg_at_5
|
262 |
+
value: 0.63842
|
263 |
+
- type: recall_at_1
|
264 |
+
value: 0.39264
|
265 |
+
- type: recall_at_10
|
266 |
+
value: 0.78577
|
267 |
+
- type: recall_at_100
|
268 |
+
value: 0.93291
|
269 |
+
- type: recall_at_1000
|
270 |
+
value: 0.97493
|
271 |
+
- type: recall_at_20
|
272 |
+
value: 0.85435
|
273 |
+
- type: recall_at_3
|
274 |
+
value: 0.61055
|
275 |
+
- type: recall_at_5
|
276 |
+
value: 0.69774
|
277 |
+
- dataset:
|
278 |
+
type: miracl/mmteb-miracl
|
279 |
+
name: Miracl (fr)
|
280 |
+
config: fr
|
281 |
+
split: dev
|
282 |
+
task:
|
283 |
+
type: Retrieval
|
284 |
+
metrics:
|
285 |
+
- type: ndcg_at_1
|
286 |
+
value: 0.3965
|
287 |
+
- type: ndcg_at_10
|
288 |
+
value: 0.49891
|
289 |
+
- type: ndcg_at_100
|
290 |
+
value: 0.56492
|
291 |
+
- type: ndcg_at_1000
|
292 |
+
value: 0.57837
|
293 |
+
- type: ndcg_at_20
|
294 |
+
value: 0.53163
|
295 |
+
- type: ndcg_at_3
|
296 |
+
value: 0.39843
|
297 |
+
- type: ndcg_at_5
|
298 |
+
value: 0.44416
|
299 |
+
- type: recall_at_1
|
300 |
+
value: 0.22644
|
301 |
+
- type: recall_at_10
|
302 |
+
value: 0.65169
|
303 |
+
- type: recall_at_100
|
304 |
+
value: 0.89786
|
305 |
+
- type: recall_at_1000
|
306 |
+
value: 0.98081
|
307 |
+
- type: recall_at_20
|
308 |
+
value: 0.75338
|
309 |
+
- type: recall_at_3
|
310 |
+
value: 0.39798
|
311 |
+
- type: recall_at_5
|
312 |
+
value: 0.51001
|
313 |
+
- dataset:
|
314 |
+
type: miracl/mmteb-miracl
|
315 |
+
name: Miracl (hi)
|
316 |
+
config: hi
|
317 |
+
split: dev
|
318 |
+
task:
|
319 |
+
type: Retrieval
|
320 |
+
metrics:
|
321 |
+
- type: ndcg_at_1
|
322 |
+
value: 0.36857
|
323 |
+
- type: ndcg_at_10
|
324 |
+
value: 0.46141
|
325 |
+
- type: ndcg_at_100
|
326 |
+
value: 0.52565
|
327 |
+
- type: ndcg_at_1000
|
328 |
+
value: 0.54319
|
329 |
+
- type: ndcg_at_20
|
330 |
+
value: 0.49384
|
331 |
+
- type: ndcg_at_3
|
332 |
+
value: 0.39469
|
333 |
+
- type: ndcg_at_5
|
334 |
+
value: 0.4184
|
335 |
+
- type: recall_at_1
|
336 |
+
value: 0.20185
|
337 |
+
- type: recall_at_10
|
338 |
+
value: 0.59474
|
339 |
+
- type: recall_at_100
|
340 |
+
value: 0.83385
|
341 |
+
- type: recall_at_1000
|
342 |
+
value: 0.94813
|
343 |
+
- type: recall_at_20
|
344 |
+
value: 0.69437
|
345 |
+
- type: recall_at_3
|
346 |
+
value: 0.38993
|
347 |
+
- type: recall_at_5
|
348 |
+
value: 0.47881
|
349 |
+
- dataset:
|
350 |
+
type: miracl/mmteb-miracl
|
351 |
+
name: Miracl (id)
|
352 |
+
config: id
|
353 |
+
split: dev
|
354 |
+
task:
|
355 |
+
type: Retrieval
|
356 |
+
metrics:
|
357 |
+
- type: ndcg_at_1
|
358 |
+
value: 0.46354
|
359 |
+
- type: ndcg_at_10
|
360 |
+
value: 0.47229
|
361 |
+
- type: ndcg_at_100
|
362 |
+
value: 0.5525
|
363 |
+
- type: ndcg_at_1000
|
364 |
+
value: 0.57648
|
365 |
+
- type: ndcg_at_20
|
366 |
+
value: 0.50606
|
367 |
+
- type: ndcg_at_3
|
368 |
+
value: 0.42538
|
369 |
+
- type: ndcg_at_5
|
370 |
+
value: 0.43717
|
371 |
+
- type: recall_at_1
|
372 |
+
value: 0.20787
|
373 |
+
- type: recall_at_10
|
374 |
+
value: 0.54771
|
375 |
+
- type: recall_at_100
|
376 |
+
value: 0.80689
|
377 |
+
- type: recall_at_1000
|
378 |
+
value: 0.94032
|
379 |
+
- type: recall_at_20
|
380 |
+
value: 0.63842
|
381 |
+
- type: recall_at_3
|
382 |
+
value: 0.36229
|
383 |
+
- type: recall_at_5
|
384 |
+
value: 0.44437
|
385 |
+
- dataset:
|
386 |
+
type: miracl/mmteb-miracl
|
387 |
+
name: Miracl (ja)
|
388 |
+
config: ja
|
389 |
+
split: dev
|
390 |
+
task:
|
391 |
+
type: Retrieval
|
392 |
+
metrics:
|
393 |
+
- type: ndcg_at_1
|
394 |
+
value: 0.56279
|
395 |
+
- type: ndcg_at_10
|
396 |
+
value: 0.6281
|
397 |
+
- type: ndcg_at_100
|
398 |
+
value: 0.67757
|
399 |
+
- type: ndcg_at_1000
|
400 |
+
value: 0.68667
|
401 |
+
- type: ndcg_at_20
|
402 |
+
value: 0.6521
|
403 |
+
- type: ndcg_at_3
|
404 |
+
value: 0.56226
|
405 |
+
- type: ndcg_at_5
|
406 |
+
value: 0.5866
|
407 |
+
- type: recall_at_1
|
408 |
+
value: 0.36648
|
409 |
+
- type: recall_at_10
|
410 |
+
value: 0.7496
|
411 |
+
- type: recall_at_100
|
412 |
+
value: 0.92461
|
413 |
+
- type: recall_at_1000
|
414 |
+
value: 0.97827
|
415 |
+
- type: recall_at_20
|
416 |
+
value: 0.82326
|
417 |
+
- type: recall_at_3
|
418 |
+
value: 0.55845
|
419 |
+
- type: recall_at_5
|
420 |
+
value: 0.63854
|
421 |
+
- dataset:
|
422 |
+
type: miracl/mmteb-miracl
|
423 |
+
name: Miracl (ko)
|
424 |
+
config: ko
|
425 |
+
split: dev
|
426 |
+
task:
|
427 |
+
type: Retrieval
|
428 |
+
metrics:
|
429 |
+
- type: ndcg_at_1
|
430 |
+
value: 0.52582
|
431 |
+
- type: ndcg_at_10
|
432 |
+
value: 0.59216
|
433 |
+
- type: ndcg_at_100
|
434 |
+
value: 0.65093
|
435 |
+
- type: ndcg_at_1000
|
436 |
+
value: 0.66204
|
437 |
+
- type: ndcg_at_20
|
438 |
+
value: 0.62427
|
439 |
+
- type: ndcg_at_3
|
440 |
+
value: 0.5373
|
441 |
+
- type: ndcg_at_5
|
442 |
+
value: 0.55886
|
443 |
+
- type: recall_at_1
|
444 |
+
value: 0.30521
|
445 |
+
- type: recall_at_10
|
446 |
+
value: 0.71159
|
447 |
+
- type: recall_at_100
|
448 |
+
value: 0.90203
|
449 |
+
- type: recall_at_1000
|
450 |
+
value: 0.96714
|
451 |
+
- type: recall_at_20
|
452 |
+
value: 0.80209
|
453 |
+
- type: recall_at_3
|
454 |
+
value: 0.515
|
455 |
+
- type: recall_at_5
|
456 |
+
value: 0.6071
|
457 |
+
- dataset:
|
458 |
+
type: miracl/mmteb-miracl
|
459 |
+
name: Miracl (ru)
|
460 |
+
config: ru
|
461 |
+
split: dev
|
462 |
+
task:
|
463 |
+
type: Retrieval
|
464 |
+
metrics:
|
465 |
+
- type: ndcg_at_1
|
466 |
+
value: 0.47524
|
467 |
+
- type: ndcg_at_10
|
468 |
+
value: 0.52349
|
469 |
+
- type: ndcg_at_100
|
470 |
+
value: 0.59725
|
471 |
+
- type: ndcg_at_1000
|
472 |
+
value: 0.61313
|
473 |
+
- type: ndcg_at_20
|
474 |
+
value: 0.55669
|
475 |
+
- type: ndcg_at_3
|
476 |
+
value: 0.46812
|
477 |
+
- type: ndcg_at_5
|
478 |
+
value: 0.48442
|
479 |
+
- type: recall_at_1
|
480 |
+
value: 0.24337
|
481 |
+
- type: recall_at_10
|
482 |
+
value: 0.62437
|
483 |
+
- type: recall_at_100
|
484 |
+
value: 0.86489
|
485 |
+
- type: recall_at_1000
|
486 |
+
value: 0.95266
|
487 |
+
- type: recall_at_20
|
488 |
+
value: 0.71411
|
489 |
+
- type: recall_at_3
|
490 |
+
value: 0.42927
|
491 |
+
- type: recall_at_5
|
492 |
+
value: 0.51258
|
493 |
+
- dataset:
|
494 |
+
type: miracl/mmteb-miracl
|
495 |
+
name: Miracl (sw)
|
496 |
+
config: sw
|
497 |
+
split: dev
|
498 |
+
task:
|
499 |
+
type: Retrieval
|
500 |
+
metrics:
|
501 |
+
- type: ndcg_at_1
|
502 |
+
value: 0.5166
|
503 |
+
- type: ndcg_at_10
|
504 |
+
value: 0.61271
|
505 |
+
- type: ndcg_at_100
|
506 |
+
value: 0.66099
|
507 |
+
- type: ndcg_at_1000
|
508 |
+
value: 0.66867
|
509 |
+
- type: ndcg_at_20
|
510 |
+
value: 0.63643
|
511 |
+
- type: ndcg_at_3
|
512 |
+
value: 0.54828
|
513 |
+
- type: ndcg_at_5
|
514 |
+
value: 0.57382
|
515 |
+
- type: recall_at_1
|
516 |
+
value: 0.35277
|
517 |
+
- type: recall_at_10
|
518 |
+
value: 0.74368
|
519 |
+
- type: recall_at_100
|
520 |
+
value: 0.92261
|
521 |
+
- type: recall_at_1000
|
522 |
+
value: 0.97109
|
523 |
+
- type: recall_at_20
|
524 |
+
value: 0.81888
|
525 |
+
- type: recall_at_3
|
526 |
+
value: 0.56739
|
527 |
+
- type: recall_at_5
|
528 |
+
value: 0.6421
|
529 |
+
- dataset:
|
530 |
+
type: miracl/mmteb-miracl
|
531 |
+
name: Miracl (te)
|
532 |
+
config: te
|
533 |
+
split: dev
|
534 |
+
task:
|
535 |
+
type: Retrieval
|
536 |
+
metrics:
|
537 |
+
- type: ndcg_at_1
|
538 |
+
value: 0.63768
|
539 |
+
- type: ndcg_at_10
|
540 |
+
value: 0.79193
|
541 |
+
- type: ndcg_at_100
|
542 |
+
value: 0.80243
|
543 |
+
- type: ndcg_at_1000
|
544 |
+
value: 0.80438
|
545 |
+
- type: ndcg_at_20
|
546 |
+
value: 0.79549
|
547 |
+
- type: ndcg_at_3
|
548 |
+
value: 0.76031
|
549 |
+
- type: ndcg_at_5
|
550 |
+
value: 0.77915
|
551 |
+
- type: recall_at_1
|
552 |
+
value: 0.63084
|
553 |
+
- type: recall_at_10
|
554 |
+
value: 0.92411
|
555 |
+
- type: recall_at_100
|
556 |
+
value: 0.97363
|
557 |
+
- type: recall_at_1000
|
558 |
+
value: 0.98833
|
559 |
+
- type: recall_at_20
|
560 |
+
value: 0.9374
|
561 |
+
- type: recall_at_3
|
562 |
+
value: 0.84159
|
563 |
+
- type: recall_at_5
|
564 |
+
value: 0.88627
|
565 |
+
- dataset:
|
566 |
+
type: miracl/mmteb-miracl
|
567 |
+
name: Miracl (th)
|
568 |
+
config: th
|
569 |
+
split: dev
|
570 |
+
task:
|
571 |
+
type: Retrieval
|
572 |
+
metrics:
|
573 |
+
- type: ndcg_at_1
|
574 |
+
value: 0.66712
|
575 |
+
- type: ndcg_at_10
|
576 |
+
value: 0.73324
|
577 |
+
- type: ndcg_at_100
|
578 |
+
value: 0.76633
|
579 |
+
- type: ndcg_at_1000
|
580 |
+
value: 0.77119
|
581 |
+
- type: ndcg_at_20
|
582 |
+
value: 0.75243
|
583 |
+
- type: ndcg_at_3
|
584 |
+
value: 0.67393
|
585 |
+
- type: ndcg_at_5
|
586 |
+
value: 0.70201
|
587 |
+
- type: recall_at_1
|
588 |
+
value: 0.47106
|
589 |
+
- type: recall_at_10
|
590 |
+
value: 0.84294
|
591 |
+
- type: recall_at_100
|
592 |
+
value: 0.95949
|
593 |
+
- type: recall_at_1000
|
594 |
+
value: 0.98874
|
595 |
+
- type: recall_at_20
|
596 |
+
value: 0.90085
|
597 |
+
- type: recall_at_3
|
598 |
+
value: 0.68456
|
599 |
+
- type: recall_at_5
|
600 |
+
value: 0.75915
|
601 |
+
- dataset:
|
602 |
+
type: miracl/mmteb-miracl
|
603 |
+
name: Miracl (yo)
|
604 |
+
config: yo
|
605 |
+
split: dev
|
606 |
+
task:
|
607 |
+
type: Retrieval
|
608 |
+
metrics:
|
609 |
+
- type: ndcg_at_1
|
610 |
+
value: 0.4958
|
611 |
+
- type: ndcg_at_10
|
612 |
+
value: 0.68705
|
613 |
+
- type: ndcg_at_100
|
614 |
+
value: 0.70664
|
615 |
+
- type: ndcg_at_1000
|
616 |
+
value: 0.71197
|
617 |
+
- type: ndcg_at_20
|
618 |
+
value: 0.698
|
619 |
+
- type: ndcg_at_3
|
620 |
+
value: 0.64793
|
621 |
+
- type: ndcg_at_5
|
622 |
+
value: 0.66709
|
623 |
+
- type: recall_at_1
|
624 |
+
value: 0.46289
|
625 |
+
- type: recall_at_10
|
626 |
+
value: 0.85154
|
627 |
+
- type: recall_at_100
|
628 |
+
value: 0.93557
|
629 |
+
- type: recall_at_1000
|
630 |
+
value: 0.97479
|
631 |
+
- type: recall_at_20
|
632 |
+
value: 0.89076
|
633 |
+
- type: recall_at_3
|
634 |
+
value: 0.7507
|
635 |
+
- type: recall_at_5
|
636 |
+
value: 0.79202
|
637 |
+
- dataset:
|
638 |
+
type: miracl/mmteb-miracl
|
639 |
+
name: Miracl (zh)
|
640 |
+
config: zh
|
641 |
+
split: dev
|
642 |
+
task:
|
643 |
+
type: Retrieval
|
644 |
+
metrics:
|
645 |
+
- type: ndcg_at_1
|
646 |
+
value: 0.47583
|
647 |
+
- type: ndcg_at_10
|
648 |
+
value: 0.52553
|
649 |
+
- type: ndcg_at_100
|
650 |
+
value: 0.6
|
651 |
+
- type: ndcg_at_1000
|
652 |
+
value: 0.61415
|
653 |
+
- type: ndcg_at_20
|
654 |
+
value: 0.55668
|
655 |
+
- type: ndcg_at_3
|
656 |
+
value: 0.45839
|
657 |
+
- type: ndcg_at_5
|
658 |
+
value: 0.48127
|
659 |
+
- type: recall_at_1
|
660 |
+
value: 0.24488
|
661 |
+
- type: recall_at_10
|
662 |
+
value: 0.63659
|
663 |
+
- type: recall_at_100
|
664 |
+
value: 0.89702
|
665 |
+
- type: recall_at_1000
|
666 |
+
value: 0.97996
|
667 |
+
- type: recall_at_20
|
668 |
+
value: 0.72652
|
669 |
+
- type: recall_at_3
|
670 |
+
value: 0.42827
|
671 |
+
- type: recall_at_5
|
672 |
+
value: 0.52081
|
673 |
+
---
|
674 |
+
# Granite-Embedding-278m-multilingual
|
675 |
+
|
676 |
+
**Model Summary:**
|
677 |
+
Granite-Embedding-278M-Multilingual is a 278M parameter model from the Granite Embeddings suite that can be used to generate high quality text embeddings. This model produces embedding vectors of size 768 and is trained using a combination of open source relevance-pair datasets with permissive, enterprise-friendly license, and IBM collected and generated datasets. This model is developed using contrastive finetuning, knowledge distillation and model merging for improved performance.
|
678 |
+
|
679 |
+
- **Developers:** Granite Embedding Team, IBM
|
680 |
+
- **GitHub Repository:** [ibm-granite/granite-embedding-models](https://github.com/ibm-granite/granite-embedding-models)
|
681 |
+
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
|
682 |
+
- **Paper:** Coming Soon
|
683 |
+
- **Release Date**: December 18th, 2024
|
684 |
+
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
685 |
+
|
686 |
+
**Supported Languages:**
|
687 |
+
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite-Embedding-278M-Multilingual for languages beyond these 12 languages.
|
688 |
+
|
689 |
+
**Intended use:**
|
690 |
+
The model is designed to produce fixed length vector representations for a given text, which can be used for text similarity, retrieval, and search applications.
|
691 |
+
|
692 |
+
**Usage with Sentence Transformers:**
|
693 |
+
The model is compatible with SentenceTransformer library and is very easy to use:
|
694 |
+
|
695 |
+
First, install the sentence transformers library
|
696 |
+
```shell
|
697 |
+
pip install sentence_transformers
|
698 |
+
```
|
699 |
+
|
700 |
+
The model can then be used to encode pairs of text and find the similarity between their representations
|
701 |
+
|
702 |
+
```python
|
703 |
+
from sentence_transformers import SentenceTransformer, util
|
704 |
+
|
705 |
+
model_path = "ibm-granite/granite-embedding-278m-multilingual"
|
706 |
+
# Load the Sentence Transformer model
|
707 |
+
model = SentenceTransformer(model_path)
|
708 |
+
|
709 |
+
input_queries = [
|
710 |
+
' Who made the song My achy breaky heart? ',
|
711 |
+
'summit define'
|
712 |
+
]
|
713 |
+
|
714 |
+
input_passages = [
|
715 |
+
"Achy Breaky Heart is a country song written by Don Von Tress. Originally titled Don't Tell My Heart and performed by The Marcy Brothers in 1991. ",
|
716 |
+
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
|
717 |
+
]
|
718 |
+
|
719 |
+
# encode queries and passages
|
720 |
+
query_embeddings = model.encode(input_queries)
|
721 |
+
passage_embeddings = model.encode(input_passages)
|
722 |
+
|
723 |
+
# calculate cosine similarity
|
724 |
+
print(util.cos_sim(query_embeddings, passage_embeddings))
|
725 |
+
```
|
726 |
+
|
727 |
+
**Usage with Huggingface Transformers:**
|
728 |
+
This is a simple example of how to use the Granite-Embedding-278m-Multilingual model with the Transformers library and PyTorch.
|
729 |
+
|
730 |
+
First, install the required libraries
|
731 |
+
```shell
|
732 |
+
pip install transformers torch
|
733 |
+
```
|
734 |
+
|
735 |
+
The model can then be used to encode pairs of text
|
736 |
+
|
737 |
+
```python
|
738 |
+
import torch
|
739 |
+
from transformers import AutoModel, AutoTokenizer
|
740 |
+
|
741 |
+
model_path = "ibm-granite/granite-embedding-278m-multilingual"
|
742 |
+
|
743 |
+
# Load the model and tokenizer
|
744 |
+
model = AutoModel.from_pretrained(model_path)
|
745 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
746 |
+
model.eval()
|
747 |
+
|
748 |
+
input_queries = [
|
749 |
+
' Who made the song My achy breaky heart? ',
|
750 |
+
'summit define'
|
751 |
+
]
|
752 |
+
|
753 |
+
# tokenize inputs
|
754 |
+
tokenized_queries = tokenizer(input_queries, padding=True, truncation=True, return_tensors='pt')
|
755 |
+
|
756 |
+
# encode queries
|
757 |
+
with torch.no_grad():
|
758 |
+
# Queries
|
759 |
+
model_output = model(**tokenized_queries)
|
760 |
+
# Perform pooling. granite-embedding-278m-multilingual uses CLS Pooling
|
761 |
+
query_embeddings = model_output[0][:, 0]
|
762 |
+
|
763 |
+
# normalize the embeddings
|
764 |
+
query_embeddings = torch.nn.functional.normalize(query_embeddings, dim=1)
|
765 |
+
|
766 |
+
```
|
767 |
+
|
768 |
+
**Evaluation:**
|
769 |
+
The average performance of the Granite-Embedding-278M-Multilingual on Multilingual Miracl (across 18 langauges), Mintaka Retrieval (across 8 languages) and MTEB Retrieval for English (across 15 tasks), German (across 4 tasks), Spanish (across 2 tasks), Frenc (across 5 tasks), Japanese (across 2 tasks), Arabic (1 task), Korean (1 task) and Chinese (across 8 tasks) is reported below.
|
770 |
+
|
771 |
+
| Model | Paramters (M)| Embedding Dimension | Miracl (18) | Mintaka Retrieval (8) | MTEB English (15) | MTEB German (4) |MTEB Spanish (2) | MTEB French (5) | MTEB Japanese (2) | MTEB Arabic (1) | MTEB Korean (1) | MTEB Chinese (8) |
|
772 |
+
|:-----------------------------------|:------------:|:-------------------:|:-------------:| :---------------------:|:-----------------:|:---------------:|:---------------:|:---------------:|:----------------:|:----------------:|:---------------:|:----------------:|
|
773 |
+
|granite-embedding-278M-multilingual | 278 | 768 | 58.3 | 23.2 | 48.2 | 71.2 | 52.6 | 54.1 | 61.7 | 64.2 | 71.8 | 45.2 |
|
774 |
+
|
775 |
+
**Model Architecture:**
|
776 |
+
Granite-Embedding-278m-Multilingual is based on an encoder-only XLM-RoBERTa like transformer architecture, trained internally at IBM Research.
|
777 |
+
|
778 |
+
| Model | granite-embedding-30m-english | granite-embedding-125m-english | granite-embedding-107M-multilingual | granite-embedding-278m-multilingual |
|
779 |
+
| :-------- | :-------:| :-------: | :---------:| :-----:|
|
780 |
+
| Embedding size | 384 | 768 | 384 | **768** |
|
781 |
+
| Number of layers | 6 | 12 | 6 | **12** |
|
782 |
+
| Number of attention heads | 12 | 12 | 12 | **12** |
|
783 |
+
| Intermediate size | 1536 | 3072 | 1536 | **3072** |
|
784 |
+
| Activation Function | GeLU | GeLU | GeLU | **GeLU** |
|
785 |
+
| Vocabulary Size | 50265 | 50265 | 250002 | **250002** |
|
786 |
+
| Max. Sequence Length | 512 | 512 | 512 | **512** |
|
787 |
+
| # Parameters | 30M | 125M | 107M | **278M** |
|
788 |
+
|
789 |
+
|
790 |
+
**Training Data:**
|
791 |
+
Overall, the training data consists of four key sources: (1) unsupervised title-body paired data scraped from the web, (2) publicly available paired with permissive, enterprise-friendly license, (3) IBM-internal paired data targetting specific technical domains, and (4) IBM-generated synthetic data. The data is listed below:
|
792 |
+
|
793 |
+
| **Dataset** | **Num. Pairs** |
|
794 |
+
|:--------------------------------------------------------------------------|:--------------:|
|
795 |
+
| Multilingual MC4 | 52,823,484 |
|
796 |
+
| Multilingual Webhose | 12,369,322 |
|
797 |
+
| English Wikipedia | 20,745,403 |
|
798 |
+
| Multilingual Wikimedia | 2,911,090 |
|
799 |
+
| Miracl Corpus (Title-Body) | 10,120,398 |
|
800 |
+
| Stack Exchange Duplicate questions (titles) | 304,525 |
|
801 |
+
| Stack Exchange Duplicate questions (titles) | 304,525 |
|
802 |
+
| Stack Exchange Duplicate questions (bodies) | 250,519 |
|
803 |
+
| Machine Translations of Stack Exchange Duplicate questions (titles) | 187,195 |
|
804 |
+
| Stack Exchange (Title, Answer) pairs | 4,067,139 |
|
805 |
+
| Stack Exchange (Title, Body) pairs | 23,978,013 |
|
806 |
+
| Stack Exchange (Title, Body) pairs | 23,978,013 |
|
807 |
+
| Machine Translations of Stack Exchange (Title+Body, Answer) pairs | 1,827,15 |
|
808 |
+
| SearchQA | 582,261 |
|
809 |
+
| S2ORC (Title, Abstract) | 41,769,185 |
|
810 |
+
| WikiAnswers Duplicate question pairs | 77,427,422 |
|
811 |
+
| CCNews | 614,664 |
|
812 |
+
| XSum | 226,711 |
|
813 |
+
| SimpleWiki | 102,225 |
|
814 |
+
| Machine Translated Cross Lingual Parallel Corpora | 28,376,115 |
|
815 |
+
| SPECTER citation triplets | 684,100 |
|
816 |
+
| Machine Translations of SPECTER citation triplets | 4,104,600 |
|
817 |
+
| Natural Questions (NQ) | 100,231 |
|
818 |
+
| SQuAD2.0 | 87,599 |
|
819 |
+
| HotpotQA | 85,000 |
|
820 |
+
| Fever | 109,810 |
|
821 |
+
| PubMed | 20,000,000 |
|
822 |
+
| Multilingual Miracl Triples | 81,409 |
|
823 |
+
| Multilingual MrTydi Triples | 48,715 |
|
824 |
+
| Sadeeem Question Asnwering | 4,037 |
|
825 |
+
| DBPedia Title-Body Pairs | 4,635,922 |
|
826 |
+
| Synthetic: English Query-Wikipedia Passage | 1,879,093 |
|
827 |
+
| Synthetic: English Fact Verification | 9,888 |
|
828 |
+
| Synthetic: Multilingual Query-Wikipedia Passage | 300,266 |
|
829 |
+
| Synthetic: Multilingual News Summaries | 37,489 |
|
830 |
+
| IBM Internal Triples | 40,290 |
|
831 |
+
| IBM Internal Title-Body Pairs | 1,524,586 |
|
832 |
+
|
833 |
+
Notably, we do not use the popular MS-MARCO retrieval dataset in our training corpus due to its non-commercial license, while other open-source models train on this dataset due to its high quality.
|
834 |
+
|
835 |
+
**Infrastructure:**
|
836 |
+
We train Granite Embedding Models using IBM's computing cluster, Cognitive Compute Cluster, which is outfitted with NVIDIA A100 80gb GPUs. This cluster provides a scalable and efficient infrastructure for training our models over multiple GPUs.
|
837 |
+
|
838 |
+
**Ethical Considerations and Limitations:**
|
839 |
+
The data used to train the base language model was filtered to remove text containing hate, abuse, and profanity. Granite-Embedding-278m-Multilingual is trained only for English texts, and has a context length of 512 tokens (longer texts will be truncated to this size).
|
840 |
+
|
841 |
+
|
842 |
+
<!-- ## Citation
|
843 |
+
```
|
844 |
+
@misc{granite-embedding-models,
|
845 |
+
author = {author 1, author2, ...},
|
846 |
+
title = {},
|
847 |
+
journal = {},
|
848 |
+
volume = {},
|
849 |
+
year = {2024},
|
850 |
+
url = {https://arxiv.org/abs/0000.00000},
|
851 |
+
}
|
852 |
+
``` -->
|