Prithvi-EO-1.0-100M-multi-temporal-crop-classification / multi_temporal_crop_classification_Prithvi_100M.py
carlosgomes98's picture
get rid of channels last
95b8d0f
raw
history blame
7.09 kB
import os
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
cudnn_benchmark = True
custom_imports = dict(imports=['geospatial_fm'])
num_frames = 3
img_size = 224
num_workers = 2
# model
# TO BE DEFINED BY USER: model path
pretrained_weights_path = '<path to pretrained weights>'
num_layers = 6
patch_size = 16
embed_dim = 768
num_heads = 8
tubelet_size = 1
max_epochs = 80
eval_epoch_interval = 5
loss_weights_multi = [
0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186, 3.249462,
1.542289, 2.175141, 2.272419, 3.062762, 3.626097, 1.198702
]
loss_func = dict(
type='CrossEntropyLoss',
use_sigmoid=False,
class_weight=loss_weights_multi,
avg_non_ignore=True)
output_embed_dim = embed_dim*num_frames
# TO BE DEFINED BY USER: Save directory
experiment = '<experiment name>'
project_dir = '<project directory name>'
work_dir = os.path.join(project_dir, experiment)
save_path = work_dir
gpu_ids = range(0, 1)
dataset_type = 'GeospatialDataset'
# TO BE DEFINED BY USER: data directory
data_root = '<path to data root>'
splits = dict(
train='<path to train split>',
val= '<path to val split>',
test= '<path to test split>'
)
img_norm_cfg = dict(
means=[
494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962,
1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459,
2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066,
2968.881459, 2634.621962, 1739.579917
],
stds=[
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808,
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808,
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808
])
bands = [0, 1, 2, 3, 4, 5]
tile_size = 224
orig_nsize = 512
crop_size = (tile_size, tile_size)
train_pipeline = [
dict(type='LoadGeospatialImageFromFile', to_float32=True),
dict(type='LoadGeospatialAnnotations', reduce_zero_label=True),
dict(type='RandomFlip', prob=0.5),
dict(type='ToTensor', keys=['img', 'gt_semantic_seg']),
# to channels first
dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)),
dict(type='TorchNormalize', **img_norm_cfg),
dict(type='TorchRandomCrop', crop_size=crop_size),
dict(type='Reshape', keys=['img'], new_shape=(len(bands), num_frames, tile_size, tile_size)),
dict(type='Reshape', keys=['gt_semantic_seg'], new_shape=(1, tile_size, tile_size)),
dict(type='CastTensor', keys=['gt_semantic_seg'], new_type="torch.LongTensor"),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadGeospatialImageFromFile', to_float32=True),
dict(type='ToTensor', keys=['img']),
# to channels first
dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)),
dict(type='TorchNormalize', **img_norm_cfg),
dict(type='Reshape', keys=['img'], new_shape=(len(bands), num_frames, -1, -1), look_up = {'2': 1, '3': 2}),
dict(type='CastTensor', keys=['img'], new_type="torch.FloatTensor"),
dict(type='CollectTestList', keys=['img'],
meta_keys=['img_info', 'seg_fields', 'img_prefix', 'seg_prefix', 'filename', 'ori_filename', 'img',
'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']),
]
CLASSES = ('Natural Vegetation',
'Forest',
'Corn',
'Soybeans',
'Wetlands',
'Developed/Barren',
'Open Water',
'Winter Wheat',
'Alfalfa',
'Fallow/Idle Cropland',
'Cotton',
'Sorghum',
'Other')
dataset = 'GeospatialDataset'
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
train=dict(
type=dataset,
CLASSES=CLASSES,
reduce_zero_label=True,
data_root=data_root,
img_dir='training_chips',
ann_dir='training_chips',
pipeline=train_pipeline,
img_suffix='_merged.tif',
seg_map_suffix='.mask.tif',
split=splits['train']),
val=dict(
type=dataset,
CLASSES=CLASSES,
reduce_zero_label=True,
data_root=data_root,
img_dir='validation_chips',
ann_dir='validation_chips',
pipeline=test_pipeline,
img_suffix='_merged.tif',
seg_map_suffix='.mask.tif',
split=splits['val']
),
test=dict(
type=dataset,
CLASSES=CLASSES,
reduce_zero_label=True,
data_root=data_root,
img_dir='validation_chips',
ann_dir='validation_chips',
pipeline=test_pipeline,
img_suffix='_merged.tif',
seg_map_suffix='.mask.tif',
split=splits['val']
))
optimizer = dict(
type='Adam', lr=1.5e-05, betas=(0.9, 0.999), weight_decay=0.05)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-06,
power=1.0,
min_lr=0.0,
by_epoch=False)
log_config = dict(
interval=10,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
checkpoint_config = dict(
by_epoch=True,
interval=100,
out_dir=save_path)
evaluation = dict(interval=eval_epoch_interval, metric='mIoU', pre_eval=True, save_best='mIoU', by_epoch=True)
reduce_train_set = dict(reduce_train_set=False)
reduce_factor = dict(reduce_factor=1)
runner = dict(type='EpochBasedRunner', max_epochs=max_epochs)
workflow = [('train', 1)]
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
type='TemporalEncoderDecoder',
frozen_backbone=False,
backbone=dict(
type='TemporalViTEncoder',
pretrained=pretrained_weights_path,
img_size=img_size,
patch_size=patch_size,
num_frames=num_frames,
tubelet_size=1,
in_chans=len(bands),
embed_dim=embed_dim,
depth=6,
num_heads=num_heads,
mlp_ratio=4.0,
norm_pix_loss=False),
neck=dict(
type='ConvTransformerTokensToEmbeddingNeck',
embed_dim=embed_dim*num_frames,
output_embed_dim=output_embed_dim,
drop_cls_token=True,
Hp=14,
Wp=14),
decode_head=dict(
num_classes=len(CLASSES),
in_channels=output_embed_dim,
type='FCNHead',
in_index=-1,
channels=256,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
norm_cfg=dict(type='BN', requires_grad=True),
align_corners=False,
loss_decode=loss_func),
auxiliary_head=dict(
num_classes=len(CLASSES),
in_channels=output_embed_dim,
type='FCNHead',
in_index=-1,
channels=256,
num_convs=2,
concat_input=False,
dropout_ratio=0.1,
norm_cfg=dict(type='BN', requires_grad=True),
align_corners=False,
loss_decode=loss_func),
train_cfg=dict(),
test_cfg=dict(mode='slide', stride=(int(tile_size/2), int(tile_size/2)), crop_size=(tile_size, tile_size)))
auto_resume = False