Prithvi-EO-1.0-100M-multi-temporal-crop-classification
/
multi_temporal_crop_classification_Prithvi_100M.py
import os | |
dist_params = dict(backend='nccl') | |
log_level = 'INFO' | |
load_from = None | |
resume_from = None | |
cudnn_benchmark = True | |
custom_imports = dict(imports=['geospatial_fm']) | |
num_frames = 3 | |
img_size = 224 | |
num_workers = 2 | |
# model | |
# TO BE DEFINED BY USER: model path | |
pretrained_weights_path = '<path to pretrained weights>' | |
num_layers = 6 | |
patch_size = 16 | |
embed_dim = 768 | |
num_heads = 8 | |
tubelet_size = 1 | |
max_epochs = 80 | |
eval_epoch_interval = 5 | |
loss_weights_multi = [ | |
0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186, 3.249462, | |
1.542289, 2.175141, 2.272419, 3.062762, 3.626097, 1.198702 | |
] | |
loss_func = dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=False, | |
class_weight=loss_weights_multi, | |
avg_non_ignore=True) | |
output_embed_dim = embed_dim*num_frames | |
# TO BE DEFINED BY USER: Save directory | |
experiment = '<experiment name>' | |
project_dir = '<project directory name>' | |
work_dir = os.path.join(project_dir, experiment) | |
save_path = work_dir | |
gpu_ids = range(0, 1) | |
dataset_type = 'GeospatialDataset' | |
# TO BE DEFINED BY USER: data directory | |
data_root = '<path to data root>' | |
splits = dict( | |
train='<path to train split>', | |
val= '<path to val split>', | |
test= '<path to test split>' | |
) | |
img_norm_cfg = dict( | |
means=[ | |
494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962, | |
1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459, | |
2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066, | |
2968.881459, 2634.621962, 1739.579917 | |
], | |
stds=[ | |
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808, | |
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808, | |
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808 | |
]) | |
bands = [0, 1, 2, 3, 4, 5] | |
tile_size = 224 | |
orig_nsize = 512 | |
crop_size = (tile_size, tile_size) | |
train_pipeline = [ | |
dict(type='LoadGeospatialImageFromFile', to_float32=True), | |
dict(type='LoadGeospatialAnnotations', reduce_zero_label=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='ToTensor', keys=['img', 'gt_semantic_seg']), | |
# to channels first | |
dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)), | |
dict(type='TorchNormalize', **img_norm_cfg), | |
dict(type='TorchRandomCrop', crop_size=crop_size), | |
dict(type='Reshape', keys=['img'], new_shape=(len(bands), num_frames, tile_size, tile_size)), | |
dict(type='Reshape', keys=['gt_semantic_seg'], new_shape=(1, tile_size, tile_size)), | |
dict(type='CastTensor', keys=['gt_semantic_seg'], new_type="torch.LongTensor"), | |
dict(type='Collect', keys=['img', 'gt_semantic_seg']), | |
] | |
test_pipeline = [ | |
dict(type='LoadGeospatialImageFromFile', to_float32=True), | |
dict(type='ToTensor', keys=['img']), | |
# to channels first | |
dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)), | |
dict(type='TorchNormalize', **img_norm_cfg), | |
dict(type='Reshape', keys=['img'], new_shape=(len(bands), num_frames, -1, -1), look_up = {'2': 1, '3': 2}), | |
dict(type='CastTensor', keys=['img'], new_type="torch.FloatTensor"), | |
dict(type='CollectTestList', keys=['img'], | |
meta_keys=['img_info', 'seg_fields', 'img_prefix', 'seg_prefix', 'filename', 'ori_filename', 'img', | |
'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']), | |
] | |
CLASSES = ('Natural Vegetation', | |
'Forest', | |
'Corn', | |
'Soybeans', | |
'Wetlands', | |
'Developed/Barren', | |
'Open Water', | |
'Winter Wheat', | |
'Alfalfa', | |
'Fallow/Idle Cropland', | |
'Cotton', | |
'Sorghum', | |
'Other') | |
dataset = 'GeospatialDataset' | |
data = dict( | |
samples_per_gpu=8, | |
workers_per_gpu=4, | |
train=dict( | |
type=dataset, | |
CLASSES=CLASSES, | |
reduce_zero_label=True, | |
data_root=data_root, | |
img_dir='training_chips', | |
ann_dir='training_chips', | |
pipeline=train_pipeline, | |
img_suffix='_merged.tif', | |
seg_map_suffix='.mask.tif', | |
split=splits['train']), | |
val=dict( | |
type=dataset, | |
CLASSES=CLASSES, | |
reduce_zero_label=True, | |
data_root=data_root, | |
img_dir='validation_chips', | |
ann_dir='validation_chips', | |
pipeline=test_pipeline, | |
img_suffix='_merged.tif', | |
seg_map_suffix='.mask.tif', | |
split=splits['val'] | |
), | |
test=dict( | |
type=dataset, | |
CLASSES=CLASSES, | |
reduce_zero_label=True, | |
data_root=data_root, | |
img_dir='validation_chips', | |
ann_dir='validation_chips', | |
pipeline=test_pipeline, | |
img_suffix='_merged.tif', | |
seg_map_suffix='.mask.tif', | |
split=splits['val'] | |
)) | |
optimizer = dict( | |
type='Adam', lr=1.5e-05, betas=(0.9, 0.999), weight_decay=0.05) | |
optimizer_config = dict(grad_clip=None) | |
lr_config = dict( | |
policy='poly', | |
warmup='linear', | |
warmup_iters=1500, | |
warmup_ratio=1e-06, | |
power=1.0, | |
min_lr=0.0, | |
by_epoch=False) | |
log_config = dict( | |
interval=10, | |
hooks=[dict(type='TextLoggerHook'), | |
dict(type='TensorboardLoggerHook')]) | |
checkpoint_config = dict( | |
by_epoch=True, | |
interval=100, | |
out_dir=save_path) | |
evaluation = dict(interval=eval_epoch_interval, metric='mIoU', pre_eval=True, save_best='mIoU', by_epoch=True) | |
reduce_train_set = dict(reduce_train_set=False) | |
reduce_factor = dict(reduce_factor=1) | |
runner = dict(type='EpochBasedRunner', max_epochs=max_epochs) | |
workflow = [('train', 1)] | |
norm_cfg = dict(type='BN', requires_grad=True) | |
model = dict( | |
type='TemporalEncoderDecoder', | |
frozen_backbone=False, | |
backbone=dict( | |
type='TemporalViTEncoder', | |
pretrained=pretrained_weights_path, | |
img_size=img_size, | |
patch_size=patch_size, | |
num_frames=num_frames, | |
tubelet_size=1, | |
in_chans=len(bands), | |
embed_dim=embed_dim, | |
depth=6, | |
num_heads=num_heads, | |
mlp_ratio=4.0, | |
norm_pix_loss=False), | |
neck=dict( | |
type='ConvTransformerTokensToEmbeddingNeck', | |
embed_dim=embed_dim*num_frames, | |
output_embed_dim=output_embed_dim, | |
drop_cls_token=True, | |
Hp=14, | |
Wp=14), | |
decode_head=dict( | |
num_classes=len(CLASSES), | |
in_channels=output_embed_dim, | |
type='FCNHead', | |
in_index=-1, | |
channels=256, | |
num_convs=1, | |
concat_input=False, | |
dropout_ratio=0.1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
align_corners=False, | |
loss_decode=loss_func), | |
auxiliary_head=dict( | |
num_classes=len(CLASSES), | |
in_channels=output_embed_dim, | |
type='FCNHead', | |
in_index=-1, | |
channels=256, | |
num_convs=2, | |
concat_input=False, | |
dropout_ratio=0.1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
align_corners=False, | |
loss_decode=loss_func), | |
train_cfg=dict(), | |
test_cfg=dict(mode='slide', stride=(int(tile_size/2), int(tile_size/2)), crop_size=(tile_size, tile_size))) | |
auto_resume = False | |