ibnummuhammad commited on
Commit
90e79c8
1 Parent(s): 5cecc14

Add 'Implementing the model'

Browse files
forecasting_logistic_regression.ipynb CHANGED
@@ -342,7 +342,7 @@
342
  "name": "stderr",
343
  "output_type": "stream",
344
  "text": [
345
- "/var/folders/fj/ycln97zn6b1ckstg6ksdmgl80000gp/T/ipykernel_60413/2225886973.py:1: FutureWarning: \n",
346
  "\n",
347
  "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n",
348
  "\n",
@@ -1399,7 +1399,7 @@
1399
  },
1400
  {
1401
  "cell_type": "code",
1402
- "execution_count": 28,
1403
  "metadata": {},
1404
  "outputs": [
1405
  {
@@ -1544,6 +1544,76 @@
1544
  "print(rfe.ranking_)"
1545
  ]
1546
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547
  {
1548
  "cell_type": "code",
1549
  "execution_count": null,
 
342
  "name": "stderr",
343
  "output_type": "stream",
344
  "text": [
345
+ "/var/folders/fj/ycln97zn6b1ckstg6ksdmgl80000gp/T/ipykernel_62188/2225886973.py:1: FutureWarning: \n",
346
  "\n",
347
  "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n",
348
  "\n",
 
1399
  },
1400
  {
1401
  "cell_type": "code",
1402
+ "execution_count": 24,
1403
  "metadata": {},
1404
  "outputs": [
1405
  {
 
1544
  "print(rfe.ranking_)"
1545
  ]
1546
  },
1547
+ {
1548
+ "cell_type": "code",
1549
+ "execution_count": 25,
1550
+ "metadata": {},
1551
+ "outputs": [],
1552
+ "source": [
1553
+ "cols=['euribor3m', 'job_blue-collar', 'job_housemaid', 'marital_unknown', 'education_illiterate', 'default_no', 'default_unknown', \n",
1554
+ " 'contact_cellular', 'contact_telephone', 'month_apr', 'month_aug', 'month_dec', 'month_jul', 'month_jun', 'month_mar', \n",
1555
+ " 'month_may', 'month_nov', 'month_oct', \"poutcome_failure\", \"poutcome_success\"] \n",
1556
+ "X=os_data_X[cols]\n",
1557
+ "y=os_data_y['y']"
1558
+ ]
1559
+ },
1560
+ {
1561
+ "cell_type": "code",
1562
+ "execution_count": 27,
1563
+ "metadata": {},
1564
+ "outputs": [
1565
+ {
1566
+ "name": "stdout",
1567
+ "output_type": "stream",
1568
+ "text": [
1569
+ "Optimization terminated successfully.\n",
1570
+ " Current function value: 0.442547\n",
1571
+ " Iterations 7\n",
1572
+ " Results: Logit\n",
1573
+ "=====================================================================\n",
1574
+ "Model: Logit Method: MLE \n",
1575
+ "Dependent Variable: y Pseudo R-squared: 0.362 \n",
1576
+ "Date: 2024-04-06 21:11 AIC: 45298.4477\n",
1577
+ "No. Observations: 51134 BIC: 45475.2918\n",
1578
+ "Df Model: 19 Log-Likelihood: -22629. \n",
1579
+ "Df Residuals: 51114 LL-Null: -35443. \n",
1580
+ "Converged: 1.0000 LLR p-value: 0.0000 \n",
1581
+ "No. Iterations: 7.0000 Scale: 1.0000 \n",
1582
+ "---------------------------------------------------------------------\n",
1583
+ " Coef. Std.Err. z P>|z| [0.025 0.975]\n",
1584
+ "---------------------------------------------------------------------\n",
1585
+ "euribor3m -0.9276 0.0104 -89.3986 0.0000 -0.9479 -0.9072\n",
1586
+ "job_blue-collar 0.2944 0.0276 10.6790 0.0000 0.2403 0.3484\n",
1587
+ "job_housemaid 0.3491 0.0719 4.8587 0.0000 0.2083 0.4900\n",
1588
+ "marital_unknown 0.7634 0.2170 3.5179 0.0004 0.3381 1.1887\n",
1589
+ "education_illiterate 1.8983 0.3669 5.1738 0.0000 1.1792 2.6175\n",
1590
+ "default_no 0.7756 0.0479 16.2049 0.0000 0.6818 0.8694\n",
1591
+ "default_unknown 0.8449 0.0455 18.5609 0.0000 0.7556 0.9341\n",
1592
+ "contact_cellular -0.8155 0.0511 -15.9708 0.0000 -0.9156 -0.7154\n",
1593
+ "contact_telephone 0.3087 0.0498 6.1957 0.0000 0.2110 0.4063\n",
1594
+ "month_apr 1.6227 0.0459 35.3165 0.0000 1.5326 1.7127\n",
1595
+ "month_aug 2.8544 0.0543 52.5638 0.0000 2.7479 2.9608\n",
1596
+ "month_dec 1.8739 0.1338 14.0063 0.0000 1.6117 2.1362\n",
1597
+ "month_jul 3.2465 0.0537 60.4650 0.0000 3.1412 3.3517\n",
1598
+ "month_jun 2.0927 0.0497 42.0806 0.0000 1.9952 2.1902\n",
1599
+ "month_mar 2.6971 0.0833 32.3795 0.0000 2.5338 2.8603\n",
1600
+ "month_may 1.0958 0.0416 26.3248 0.0000 1.0143 1.1774\n",
1601
+ "month_nov 2.7162 0.0544 49.9173 0.0000 2.6096 2.8229\n",
1602
+ "month_oct 2.8007 0.0794 35.2615 0.0000 2.6450 2.9564\n",
1603
+ "poutcome_failure -0.3545 0.0344 -10.3019 0.0000 -0.4220 -0.2871\n",
1604
+ "poutcome_success 1.2213 0.0649 18.8104 0.0000 1.0941 1.3486\n",
1605
+ "=====================================================================\n",
1606
+ "\n"
1607
+ ]
1608
+ }
1609
+ ],
1610
+ "source": [
1611
+ "import statsmodels.api as sm\n",
1612
+ "logit_model=sm.Logit(y,X.astype(float))\n",
1613
+ "result=logit_model.fit()\n",
1614
+ "print(result.summary2())"
1615
+ ]
1616
+ },
1617
  {
1618
  "cell_type": "code",
1619
  "execution_count": null,