{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "df_apple = pd.read_csv('../coal-price-data/investing/AAPL Historical Data.csv')\n", "df_walmart = pd.read_csv('../coal-price-data/investing/WMT Historical Data.csv')\n", "df_tesla = pd.read_csv('../coal-price-data/investing/TSLA Historical Data.csv')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Date | \n", "Price | \n", "Open | \n", "High | \n", "Low | \n", "Vol. | \n", "Change % | \n", "
---|---|---|---|---|---|---|---|
0 | \n", "02/01/2024 | \n", "182.52 | \n", "183.97 | \n", "191.00 | \n", "179.26 | \n", "45.12M | \n", "-1.02% | \n", "
1 | \n", "01/01/2024 | \n", "184.40 | \n", "187.15 | \n", "196.38 | \n", "180.17 | \n", "1.19B | \n", "-4.22% | \n", "
2 | \n", "12/01/2023 | \n", "192.53 | \n", "190.33 | \n", "199.62 | \n", "187.45 | \n", "1.06B | \n", "1.36% | \n", "
3 | \n", "11/01/2023 | \n", "189.95 | \n", "171.00 | \n", "192.93 | \n", "170.12 | \n", "1.10B | \n", "11.23% | \n", "
4 | \n", "10/01/2023 | \n", "170.77 | \n", "171.22 | \n", "182.34 | \n", "165.67 | \n", "1.17B | \n", "-0.26% | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
513 | \n", "05/01/1981 | \n", "0.15 | \n", "0.13 | \n", "0.15 | \n", "0.12 | \n", "590.42M | \n", "15.38% | \n", "
514 | \n", "04/01/1981 | \n", "0.13 | \n", "0.11 | \n", "0.13 | \n", "0.11 | \n", "536.93M | \n", "18.18% | \n", "
515 | \n", "03/01/1981 | \n", "0.11 | \n", "0.12 | \n", "0.12 | \n", "0.10 | \n", "700.72M | \n", "-8.33% | \n", "
516 | \n", "02/01/1981 | \n", "0.12 | \n", "0.12 | \n", "0.13 | \n", "0.11 | \n", "321.62M | \n", "-7.69% | \n", "
517 | \n", "01/01/1981 | \n", "0.13 | \n", "0.15 | \n", "0.16 | \n", "0.13 | \n", "608.99M | \n", "-13.33% | \n", "
518 rows × 7 columns
\n", "