idkgaming commited on
Commit
237dd65
1 Parent(s): 3379f40

End of training

Browse files
Files changed (1) hide show
  1. README.md +14 -12
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Rouge1
24
  type: rouge
25
- value: 41.8545
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,12 +32,12 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 1.7739
36
- - Rouge1: 41.8545
37
- - Rouge2: 19.0397
38
- - Rougel: 35.2065
39
- - Rougelsum: 38.8278
40
- - Gen Len: 16.6222
41
 
42
  ## Model description
43
 
@@ -64,17 +64,19 @@ The following hyperparameters were used during training:
64
  - total_train_batch_size: 32
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
- - num_epochs: 4
68
  - mixed_precision_training: Native AMP
69
 
70
  ### Training results
71
 
72
  | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
73
  |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
74
- | No log | 1.0 | 460 | 1.7926 | 41.5391 | 18.4858 | 34.6806 | 38.3183 | 16.6663 |
75
- | 1.9666 | 2.0 | 921 | 1.7810 | 41.5694 | 18.5639 | 34.9915 | 38.4652 | 16.5599 |
76
- | 1.9457 | 3.0 | 1381 | 1.7785 | 42.0475 | 19.0086 | 35.2119 | 38.8236 | 16.6858 |
77
- | 1.9241 | 4.0 | 1840 | 1.7739 | 41.8545 | 19.0397 | 35.2065 | 38.8278 | 16.6222 |
 
 
78
 
79
 
80
  ### Framework versions
 
22
  metrics:
23
  - name: Rouge1
24
  type: rouge
25
+ value: 41.7031
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 1.7687
36
+ - Rouge1: 41.7031
37
+ - Rouge2: 18.7783
38
+ - Rougel: 35.1492
39
+ - Rougelsum: 38.6317
40
+ - Gen Len: 16.5685
41
 
42
  ## Model description
43
 
 
64
  - total_train_batch_size: 32
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
+ - num_epochs: 6
68
  - mixed_precision_training: Native AMP
69
 
70
  ### Training results
71
 
72
  | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
73
  |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
74
+ | No log | 1.0 | 460 | 1.8087 | 40.9414 | 18.2439 | 34.4046 | 38.0469 | 16.4645 |
75
+ | 1.9998 | 2.0 | 921 | 1.7943 | 41.09 | 18.2457 | 34.4794 | 38.098 | 16.5538 |
76
+ | 1.9621 | 3.0 | 1381 | 1.7809 | 41.6111 | 18.5089 | 34.9893 | 38.6344 | 16.5795 |
77
+ | 1.9445 | 4.0 | 1842 | 1.7731 | 41.7145 | 18.7104 | 35.1886 | 38.7006 | 16.6198 |
78
+ | 1.9227 | 5.0 | 2302 | 1.7702 | 41.5079 | 18.5223 | 34.9946 | 38.4816 | 16.5575 |
79
+ | 1.9142 | 5.99 | 2760 | 1.7687 | 41.7031 | 18.7783 | 35.1492 | 38.6317 | 16.5685 |
80
 
81
 
82
  ### Framework versions