idkgaming commited on
Commit
83fc9ea
1 Parent(s): decce95

End of training

Browse files
Files changed (1) hide show
  1. README.md +28 -14
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Rouge1
24
  type: rouge
25
- value: 41.7031
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,12 +32,12 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 1.7687
36
- - Rouge1: 41.7031
37
- - Rouge2: 18.7783
38
- - Rougel: 35.1492
39
- - Rougelsum: 38.6317
40
- - Gen Len: 16.5685
41
 
42
  ## Model description
43
 
@@ -64,19 +64,33 @@ The following hyperparameters were used during training:
64
  - total_train_batch_size: 32
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
- - num_epochs: 6
68
  - mixed_precision_training: Native AMP
69
 
70
  ### Training results
71
 
72
  | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
73
  |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
74
- | No log | 1.0 | 460 | 1.8087 | 40.9414 | 18.2439 | 34.4046 | 38.0469 | 16.4645 |
75
- | 1.9998 | 2.0 | 921 | 1.7943 | 41.09 | 18.2457 | 34.4794 | 38.098 | 16.5538 |
76
- | 1.9621 | 3.0 | 1381 | 1.7809 | 41.6111 | 18.5089 | 34.9893 | 38.6344 | 16.5795 |
77
- | 1.9445 | 4.0 | 1842 | 1.7731 | 41.7145 | 18.7104 | 35.1886 | 38.7006 | 16.6198 |
78
- | 1.9227 | 5.0 | 2302 | 1.7702 | 41.5079 | 18.5223 | 34.9946 | 38.4816 | 16.5575 |
79
- | 1.9142 | 5.99 | 2760 | 1.7687 | 41.7031 | 18.7783 | 35.1492 | 38.6317 | 16.5685 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
 
82
  ### Framework versions
 
22
  metrics:
23
  - name: Rouge1
24
  type: rouge
25
+ value: 43.3371
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 1.7032
36
+ - Rouge1: 43.3371
37
+ - Rouge2: 20.6294
38
+ - Rougel: 36.6607
39
+ - Rougelsum: 40.209
40
+ - Gen Len: 16.698
41
 
42
  ## Model description
43
 
 
64
  - total_train_batch_size: 32
65
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
+ - num_epochs: 20
68
  - mixed_precision_training: Native AMP
69
 
70
  ### Training results
71
 
72
  | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
73
  |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
74
+ | No log | 1.0 | 460 | 1.8115 | 41.2589 | 18.3552 | 34.5107 | 38.2488 | 16.8068 |
75
+ | 1.9846 | 2.0 | 921 | 1.7892 | 41.1617 | 18.4345 | 34.745 | 38.2061 | 16.6247 |
76
+ | 1.9568 | 3.0 | 1381 | 1.7757 | 41.7317 | 19.0104 | 35.2965 | 38.6958 | 16.4059 |
77
+ | 1.9298 | 4.0 | 1842 | 1.7573 | 42.0478 | 19.1229 | 35.4855 | 39.0882 | 16.6235 |
78
+ | 1.9049 | 5.0 | 2302 | 1.7496 | 42.4985 | 19.5594 | 35.9228 | 39.4201 | 16.5416 |
79
+ | 1.8852 | 6.0 | 2763 | 1.7411 | 42.3214 | 19.6152 | 35.7488 | 39.3079 | 16.7139 |
80
+ | 1.8674 | 7.0 | 3223 | 1.7335 | 42.3206 | 19.7528 | 35.9918 | 39.2783 | 16.5073 |
81
+ | 1.855 | 8.0 | 3684 | 1.7300 | 42.9099 | 20.2273 | 36.4393 | 39.8506 | 16.61 |
82
+ | 1.8435 | 9.0 | 4144 | 1.7225 | 42.9661 | 20.3074 | 36.3468 | 39.8945 | 16.7103 |
83
+ | 1.8342 | 10.0 | 4605 | 1.7198 | 43.0181 | 20.2982 | 36.4202 | 39.9022 | 16.7726 |
84
+ | 1.8216 | 11.0 | 5065 | 1.7169 | 43.0296 | 20.5422 | 36.6314 | 40.111 | 16.6883 |
85
+ | 1.8168 | 12.0 | 5526 | 1.7144 | 43.3035 | 20.7167 | 36.7924 | 40.2953 | 16.7787 |
86
+ | 1.8168 | 13.0 | 5986 | 1.7104 | 43.2258 | 20.7416 | 36.7823 | 40.2551 | 16.7286 |
87
+ | 1.8088 | 14.0 | 6447 | 1.7075 | 43.3982 | 20.8281 | 36.8254 | 40.3198 | 16.7384 |
88
+ | 1.8008 | 15.0 | 6907 | 1.7079 | 43.3077 | 20.7164 | 36.6791 | 40.2372 | 16.687 |
89
+ | 1.8014 | 16.0 | 7368 | 1.7047 | 43.1989 | 20.6984 | 36.7104 | 40.2285 | 16.6479 |
90
+ | 1.7934 | 17.0 | 7828 | 1.7034 | 43.4149 | 20.7879 | 36.7308 | 40.3556 | 16.7922 |
91
+ | 1.7894 | 18.0 | 8289 | 1.7041 | 43.2962 | 20.7667 | 36.7017 | 40.28 | 16.6883 |
92
+ | 1.7914 | 19.0 | 8749 | 1.7037 | 43.2489 | 20.6943 | 36.676 | 40.1802 | 16.6932 |
93
+ | 1.7827 | 19.98 | 9200 | 1.7032 | 43.3371 | 20.6294 | 36.6607 | 40.209 | 16.698 |
94
 
95
 
96
  ### Framework versions