--- language: - ru tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy widget: - text: Однажды я посетил прекрасный городок в горах. На его улицах росли удивительные цветы. example_title: Example_1 pipeline_tag: token-classification base_model: DeepPavlov/rubert-base-cased model-index: - name: rubert-base-cased-token results: [] --- # rubert-base-cased-token This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the OpenCorpora dataset [opencorpora.org](http://opencorpora.org/). It achieves the following results on the evaluation set: - Loss: 0.2595 - Precision: 0.9304 - Recall: 0.9334 - F1: 0.9319 - Accuracy: 0.9424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Tokens classification from OpenCorpora: [opencorpora.org](http://opencorpora.org/dict.php?act=gram) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 69 | 0.6926 | 0.7731 | 0.7674 | 0.7702 | 0.8200 | | No log | 2.0 | 138 | 0.3744 | 0.8665 | 0.8807 | 0.8735 | 0.9003 | | No log | 3.0 | 207 | 0.2891 | 0.9004 | 0.9071 | 0.9037 | 0.9231 | | No log | 4.0 | 276 | 0.2566 | 0.9123 | 0.9217 | 0.9170 | 0.9327 | | No log | 5.0 | 345 | 0.2587 | 0.9211 | 0.9255 | 0.9233 | 0.9366 | | No log | 6.0 | 414 | 0.2472 | 0.9264 | 0.9289 | 0.9276 | 0.9401 | | No log | 7.0 | 483 | 0.2589 | 0.9267 | 0.9313 | 0.9290 | 0.9406 | | 0.3825 | 8.0 | 552 | 0.2559 | 0.9286 | 0.9334 | 0.9310 | 0.9416 | | 0.3825 | 9.0 | 621 | 0.2578 | 0.9304 | 0.9339 | 0.9321 | 0.9425 | | 0.3825 | 10.0 | 690 | 0.2595 | 0.9304 | 0.9334 | 0.9319 | 0.9424 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2