--- license: apache-2.0 pipeline_tag: mask-generation library_name: sam2 --- Model cloned from this [repo](https://github.com/facebookresearch/segment-anything-2/) and will be finetuned. Repository for SAM 2: Segment Anything in Images and Videos, a foundation model towards solving promptable visual segmentation in images and videos from FAIR. See the [SAM 2 paper](https://arxiv.org/abs/2408.00714) for more information. The official code is publicly release in this [repo](https://github.com/facebookresearch/segment-anything-2/). ## Usage For image prediction: ```python import torch from sam2.sam2_image_predictor import SAM2ImagePredictor predictor = SAM2ImagePredictor.from_pretrained("iloncka/culico-net-segm-v1-nano") with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): predictor.set_image() masks, _, _ = predictor.predict() ``` For video prediction: ```python import torch from sam2.sam2_video_predictor import SAM2VideoPredictor predictor = SAM2VideoPredictor.from_pretrained("iloncka/culico-net-segm-v1-nano") with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): state = predictor.init_state() # add new prompts and instantly get the output on the same frame frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, ): # propagate the prompts to get masklets throughout the video for frame_idx, object_ids, masks in predictor.propagate_in_video(state): ... ``` Refer to the [demo notebooks](https://github.com/facebookresearch/segment-anything-2/tree/main/notebooks) for details. ### Citation To cite the paper, model, or software, please use the below: ``` @article{ravi2024sam2, title={SAM 2: Segment Anything in Images and Videos}, author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and Mintun, Eric and Pan, Junting and Alwala, Kalyan Vasudev and Carion, Nicolas and Wu, Chao-Yuan and Girshick, Ross and Doll{\'a}r, Piotr and Feichtenhofer, Christoph}, journal={arXiv preprint arXiv:2408.00714}, url={https://arxiv.org/abs/2408.00714}, year={2024} } ```