x54-729
commited on
Commit
•
75131b4
1
Parent(s):
cfdbca8
fix README
Browse files
README.md
CHANGED
@@ -64,14 +64,14 @@ We have evaluated InternLM2 on several important benchmarks using the open-sourc
|
|
64 |
|
65 |
### Import from Transformers
|
66 |
|
67 |
-
To load the InternLM2 1.8B Chat
|
68 |
|
69 |
```python
|
70 |
import torch
|
71 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
72 |
-
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2-chat-1_8b
|
73 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and cause OOM Error.
|
74 |
-
model = AutoModelForCausalLM.from_pretrained("internlm/internlm2-chat-1_8b
|
75 |
model = model.eval()
|
76 |
response, history = model.chat(tokenizer, "hello", history=[])
|
77 |
print(response)
|
@@ -86,7 +86,7 @@ The responses can be streamed using `stream_chat`:
|
|
86 |
import torch
|
87 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
88 |
|
89 |
-
model_path = "internlm/internlm2-chat-1_8b
|
90 |
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
91 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
92 |
|
@@ -106,7 +106,7 @@ The code is licensed under Apache-2.0, while model weights are fully open for ac
|
|
106 |
|
107 |
- InternLM2-1.8B: 具有高质量和高适应灵活性的基础模型,为下游深度适应提供了良好的起点。
|
108 |
- InternLM2-Chat-1.8B-SFT:在 InternLM2-1.8B 上进行监督微调 (SFT) 后得到的对话模型。
|
109 |
-
- InternLM2-
|
110 |
|
111 |
InternLM2 模型具备以下的技术特点
|
112 |
|
@@ -137,7 +137,7 @@ InternLM2 模型具备以下的技术特点
|
|
137 |
|
138 |
### 通过 Transformers 加载
|
139 |
|
140 |
-
通过以下的代码加载 InternLM2 1.8B Chat
|
141 |
|
142 |
```python
|
143 |
import torch
|
|
|
64 |
|
65 |
### Import from Transformers
|
66 |
|
67 |
+
To load the InternLM2 1.8B Chat model using Transformers, use the following code:
|
68 |
|
69 |
```python
|
70 |
import torch
|
71 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2-chat-1_8b", trust_remote_code=True)
|
73 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and cause OOM Error.
|
74 |
+
model = AutoModelForCausalLM.from_pretrained("internlm/internlm2-chat-1_8b", torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
75 |
model = model.eval()
|
76 |
response, history = model.chat(tokenizer, "hello", history=[])
|
77 |
print(response)
|
|
|
86 |
import torch
|
87 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
88 |
|
89 |
+
model_path = "internlm/internlm2-chat-1_8b"
|
90 |
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
91 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
92 |
|
|
|
106 |
|
107 |
- InternLM2-1.8B: 具有高质量和高适应灵活性的基础模型,为下游深度适应提供了良好的起点。
|
108 |
- InternLM2-Chat-1.8B-SFT:在 InternLM2-1.8B 上进行监督微调 (SFT) 后得到的对话模型。
|
109 |
+
- InternLM2-Chat-1.8B:通过在线 RLHF 在 InternLM2-Chat-1.8B-SFT 之上进一步对齐。 InternLM2-Chat-1.8B表现出更好的指令跟随、聊天体验和函数调用,推荐下游应用程序使用。
|
110 |
|
111 |
InternLM2 模型具备以下的技术特点
|
112 |
|
|
|
137 |
|
138 |
### 通过 Transformers 加载
|
139 |
|
140 |
+
通过以下的代码加载 InternLM2 1.8B Chat 模型
|
141 |
|
142 |
```python
|
143 |
import torch
|