InternLM-Math
commited on
Commit
•
fdc6633
1
Parent(s):
911e10e
Update modeling_internlm2.py
Browse files- modeling_internlm2.py +196 -76
modeling_internlm2.py
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
-
#
|
2 |
-
# # Copyright (c) InternLM. All rights reserved.
|
3 |
#
|
4 |
-
# This code is based on
|
5 |
-
# and OPT implementations in this library. It has been modified from its
|
6 |
-
# original forms to accommodate minor architectural differences compared
|
7 |
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
#
|
9 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
# you may not use this file except in compliance with the License.
|
@@ -25,6 +21,7 @@ import warnings
|
|
25 |
from typing import List, Optional, Tuple, Union
|
26 |
|
27 |
import torch
|
|
|
28 |
import torch.utils.checkpoint
|
29 |
from einops import rearrange
|
30 |
from torch import nn
|
@@ -54,6 +51,31 @@ logger = logging.get_logger(__name__)
|
|
54 |
|
55 |
_CONFIG_FOR_DOC = "InternLM2Config"
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
59 |
def _make_causal_mask(
|
@@ -88,6 +110,7 @@ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int]
|
|
88 |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
89 |
|
90 |
|
|
|
91 |
class InternLM2RMSNorm(nn.Module):
|
92 |
def __init__(self, hidden_size, eps=1e-6):
|
93 |
"""
|
@@ -105,6 +128,7 @@ class InternLM2RMSNorm(nn.Module):
|
|
105 |
return self.weight * hidden_states.to(input_dtype)
|
106 |
|
107 |
|
|
|
108 |
class InternLM2RotaryEmbedding(nn.Module):
|
109 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
110 |
super().__init__()
|
@@ -133,7 +157,7 @@ class InternLM2RotaryEmbedding(nn.Module):
|
|
133 |
def forward(self, x, seq_len=None):
|
134 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
135 |
if seq_len > self.max_seq_len_cached:
|
136 |
-
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=
|
137 |
|
138 |
return (
|
139 |
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
@@ -141,6 +165,7 @@ class InternLM2RotaryEmbedding(nn.Module):
|
|
141 |
)
|
142 |
|
143 |
|
|
|
144 |
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
145 |
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
146 |
|
@@ -160,6 +185,7 @@ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
|
160 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
161 |
|
162 |
|
|
|
163 |
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
164 |
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
165 |
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
@@ -188,6 +214,7 @@ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
|
188 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
189 |
|
190 |
|
|
|
191 |
def rotate_half(x):
|
192 |
"""Rotates half the hidden dims of the input."""
|
193 |
x1 = x[..., : x.shape[-1] // 2]
|
@@ -195,22 +222,13 @@ def rotate_half(x):
|
|
195 |
return torch.cat((-x2, x1), dim=-1)
|
196 |
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
q_embed = (q * cos[:, :, -1, :]) + (rotate_half(q) * sin[:, :, -1, :])
|
206 |
-
else:
|
207 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
208 |
-
|
209 |
-
if k.size(2) == 1:
|
210 |
-
k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :])
|
211 |
-
else:
|
212 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
213 |
-
|
214 |
return q_embed, k_embed
|
215 |
|
216 |
|
@@ -231,6 +249,7 @@ class InternLM2MLP(nn.Module):
|
|
231 |
return down_proj
|
232 |
|
233 |
|
|
|
234 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
235 |
"""
|
236 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
@@ -243,6 +262,7 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
243 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
244 |
|
245 |
|
|
|
246 |
class InternLM2Attention(nn.Module):
|
247 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
248 |
|
@@ -287,10 +307,17 @@ class InternLM2Attention(nn.Module):
|
|
287 |
self.head_dim,
|
288 |
max_position_embeddings=self.max_position_embeddings,
|
289 |
base=self.config.rope_theta,
|
290 |
-
scaling_factor=scaling_factor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
)
|
292 |
else:
|
293 |
-
raise ValueError("Currently we only support rotary embedding's type being 'dynamic'.")
|
294 |
return self.rotary_emb
|
295 |
|
296 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
@@ -384,6 +411,7 @@ class InternLM2Attention(nn.Module):
|
|
384 |
return attn_output, attn_weights, past_key_value
|
385 |
|
386 |
|
|
|
387 |
class InternLM2FlashAttention2(InternLM2Attention):
|
388 |
"""
|
389 |
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
@@ -420,9 +448,8 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
420 |
qkv_states = rearrange(
|
421 |
qkv_states,
|
422 |
"b q (h gs d) -> b q h gs d",
|
423 |
-
gs=
|
424 |
d=self.head_dim,
|
425 |
-
q=q_len,
|
426 |
)
|
427 |
|
428 |
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
@@ -430,6 +457,10 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
430 |
key_states = qkv_states[..., -2, :]
|
431 |
value_states = qkv_states[..., -1, :]
|
432 |
|
|
|
|
|
|
|
|
|
433 |
kv_seq_len = key_states.shape[-2]
|
434 |
if past_key_value is not None:
|
435 |
kv_seq_len += past_key_value[0].shape[-2]
|
@@ -449,36 +480,9 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
449 |
key_states = key_states.transpose(1, 2)
|
450 |
value_states = value_states.transpose(1, 2)
|
451 |
|
452 |
-
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
453 |
-
|
454 |
-
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
455 |
-
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
456 |
-
# cast them back in the correct dtype just to be sure everything works as expected.
|
457 |
-
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
458 |
-
# in fp32. (InternLM2RMSNorm handles it correctly)
|
459 |
-
|
460 |
-
input_dtype = query_states.dtype
|
461 |
-
if input_dtype == torch.float32:
|
462 |
-
# Handle the case where the model is quantized
|
463 |
-
if hasattr(self.config, "_pre_quantization_dtype"):
|
464 |
-
target_dtype = self.config._pre_quantization_dtype
|
465 |
-
else:
|
466 |
-
target_dtype = self.q_proj.weight.dtype
|
467 |
-
|
468 |
-
logger.warning_once(
|
469 |
-
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
470 |
-
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back "
|
471 |
-
f"the input in {target_dtype}."
|
472 |
-
)
|
473 |
-
|
474 |
-
query_states = query_states.to(target_dtype)
|
475 |
-
key_states = key_states.to(target_dtype)
|
476 |
-
value_states = value_states.to(target_dtype)
|
477 |
-
|
478 |
attn_output = self._flash_attention_forward(
|
479 |
-
query_states, key_states, value_states, attention_mask, q_len
|
480 |
)
|
481 |
-
|
482 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
483 |
attn_output = self.wo(attn_output)
|
484 |
|
@@ -487,16 +491,112 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
487 |
|
488 |
return attn_output, attn_weights, past_key_value
|
489 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
|
|
|
491 |
class InternLM2DecoderLayer(nn.Module):
|
492 |
def __init__(self, config: InternLM2Config):
|
493 |
super().__init__()
|
494 |
self.hidden_size = config.hidden_size
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
else InternLM2FlashAttention2(config=config)
|
499 |
-
)
|
500 |
self.feed_forward = InternLM2MLP(config)
|
501 |
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
502 |
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
@@ -581,6 +681,7 @@ InternLM2_START_DOCSTRING = r"""
|
|
581 |
"""
|
582 |
|
583 |
|
|
|
584 |
@add_start_docstrings(
|
585 |
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
586 |
InternLM2_START_DOCSTRING,
|
@@ -591,7 +692,6 @@ class InternLM2PreTrainedModel(PreTrainedModel):
|
|
591 |
supports_gradient_checkpointing = True
|
592 |
_no_split_modules = ["InternLM2DecoderLayer"]
|
593 |
_skip_keys_device_placement = "past_key_values"
|
594 |
-
_supports_flash_attn_2 = True
|
595 |
|
596 |
def _init_weights(self, module):
|
597 |
std = self.config.initializer_range
|
@@ -670,6 +770,7 @@ InternLM2_INPUTS_DOCSTRING = r"""
|
|
670 |
"""
|
671 |
|
672 |
|
|
|
673 |
@add_start_docstrings(
|
674 |
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
675 |
InternLM2_START_DOCSTRING,
|
@@ -688,8 +789,10 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
688 |
super().__init__(config)
|
689 |
self.padding_idx = config.pad_token_id
|
690 |
self.vocab_size = config.vocab_size
|
|
|
691 |
|
692 |
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
|
693 |
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
694 |
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
695 |
|
@@ -703,7 +806,6 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
703 |
def set_input_embeddings(self, value):
|
704 |
self.tok_embeddings = value
|
705 |
|
706 |
-
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
707 |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
708 |
# create causal mask
|
709 |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
@@ -748,6 +850,9 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
748 |
|
749 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
750 |
|
|
|
|
|
|
|
751 |
# retrieve input_ids and inputs_embeds
|
752 |
if input_ids is not None and inputs_embeds is not None:
|
753 |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
@@ -773,14 +878,18 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
773 |
|
774 |
if inputs_embeds is None:
|
775 |
inputs_embeds = self.tok_embeddings(input_ids)
|
776 |
-
|
777 |
-
if
|
778 |
-
|
779 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
780 |
)
|
781 |
-
attention_mask = self._prepare_decoder_attention_mask(
|
782 |
-
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
783 |
-
)
|
784 |
|
785 |
# embed positions
|
786 |
hidden_states = inputs_embeds
|
@@ -854,6 +963,7 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
854 |
)
|
855 |
|
856 |
|
|
|
857 |
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
858 |
_auto_class = "AutoModelForCausalLM"
|
859 |
|
@@ -1023,12 +1133,15 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1023 |
)
|
1024 |
return reordered_past
|
1025 |
|
1026 |
-
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
|
1027 |
prompt = ""
|
|
|
|
|
|
|
|
|
1028 |
for record in history:
|
1029 |
-
prompt += f"""
|
1030 |
-
prompt += f"""
|
1031 |
-
print(prompt)
|
1032 |
return tokenizer([prompt], return_tensors="pt")
|
1033 |
|
1034 |
@torch.no_grad()
|
@@ -1042,10 +1155,15 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1042 |
do_sample: bool = True,
|
1043 |
temperature: float = 0.8,
|
1044 |
top_p: float = 0.8,
|
|
|
|
|
|
|
1045 |
**kwargs,
|
1046 |
):
|
1047 |
-
inputs = self.build_inputs(tokenizer, query, history)
|
1048 |
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
|
|
|
|
1049 |
outputs = self.generate(
|
1050 |
**inputs,
|
1051 |
streamer=streamer,
|
@@ -1053,11 +1171,12 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1053 |
do_sample=do_sample,
|
1054 |
temperature=temperature,
|
1055 |
top_p=top_p,
|
|
|
1056 |
**kwargs,
|
1057 |
)
|
1058 |
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
|
1059 |
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1060 |
-
response = response.split("
|
1061 |
history = history + [(query, response)]
|
1062 |
return response, history
|
1063 |
|
@@ -1110,7 +1229,7 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1110 |
return
|
1111 |
|
1112 |
token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
|
1113 |
-
if token.strip() != "
|
1114 |
self.response = self.response + token
|
1115 |
history = self.history + [(self.query, self.response)]
|
1116 |
self.queue.put((self.response, history))
|
@@ -1143,6 +1262,7 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
1143 |
return consumer()
|
1144 |
|
1145 |
|
|
|
1146 |
@add_start_docstrings(
|
1147 |
"""
|
1148 |
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
|
|
2 |
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
|
|
|
|
|
|
4 |
#
|
5 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
# you may not use this file except in compliance with the License.
|
|
|
21 |
from typing import List, Optional, Tuple, Union
|
22 |
|
23 |
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
import torch.utils.checkpoint
|
26 |
from einops import rearrange
|
27 |
from torch import nn
|
|
|
51 |
|
52 |
_CONFIG_FOR_DOC = "InternLM2Config"
|
53 |
|
54 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
55 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
56 |
+
def _import_flash_attn():
|
57 |
+
global flash_attn_func, flash_attn_varlen_func
|
58 |
+
global pad_input, index_first_axis, unpad_input
|
59 |
+
try:
|
60 |
+
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
|
61 |
+
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
|
62 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
63 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
64 |
+
except ImportError:
|
65 |
+
raise ImportError("flash_attn is not installed.")
|
66 |
+
|
67 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
68 |
+
def _get_unpad_data(attention_mask):
|
69 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
70 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
71 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
72 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
73 |
+
return (
|
74 |
+
indices,
|
75 |
+
cu_seqlens,
|
76 |
+
max_seqlen_in_batch,
|
77 |
+
)
|
78 |
+
|
79 |
|
80 |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
81 |
def _make_causal_mask(
|
|
|
110 |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
111 |
|
112 |
|
113 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
114 |
class InternLM2RMSNorm(nn.Module):
|
115 |
def __init__(self, hidden_size, eps=1e-6):
|
116 |
"""
|
|
|
128 |
return self.weight * hidden_states.to(input_dtype)
|
129 |
|
130 |
|
131 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
|
132 |
class InternLM2RotaryEmbedding(nn.Module):
|
133 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
134 |
super().__init__()
|
|
|
157 |
def forward(self, x, seq_len=None):
|
158 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
159 |
if seq_len > self.max_seq_len_cached:
|
160 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
161 |
|
162 |
return (
|
163 |
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
|
|
165 |
)
|
166 |
|
167 |
|
168 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
169 |
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
170 |
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
171 |
|
|
|
185 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
186 |
|
187 |
|
188 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
189 |
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
190 |
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
191 |
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
|
|
214 |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
215 |
|
216 |
|
217 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
218 |
def rotate_half(x):
|
219 |
"""Rotates half the hidden dims of the input."""
|
220 |
x1 = x[..., : x.shape[-1] // 2]
|
|
|
222 |
return torch.cat((-x2, x1), dim=-1)
|
223 |
|
224 |
|
225 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
226 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
227 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
228 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
229 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
230 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
231 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
return q_embed, k_embed
|
233 |
|
234 |
|
|
|
249 |
return down_proj
|
250 |
|
251 |
|
252 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
253 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
254 |
"""
|
255 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
|
262 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
263 |
|
264 |
|
265 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
266 |
class InternLM2Attention(nn.Module):
|
267 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
268 |
|
|
|
307 |
self.head_dim,
|
308 |
max_position_embeddings=self.max_position_embeddings,
|
309 |
base=self.config.rope_theta,
|
310 |
+
scaling_factor=scaling_factor,
|
311 |
+
)
|
312 |
+
elif scaling_type == "linear":
|
313 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
314 |
+
self.head_dim,
|
315 |
+
max_position_embeddings=self.max_position_embeddings,
|
316 |
+
base=self.config.rope_theta,
|
317 |
+
scaling_factor=scaling_factor,
|
318 |
)
|
319 |
else:
|
320 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
321 |
return self.rotary_emb
|
322 |
|
323 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
|
|
411 |
return attn_output, attn_weights, past_key_value
|
412 |
|
413 |
|
414 |
+
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
415 |
class InternLM2FlashAttention2(InternLM2Attention):
|
416 |
"""
|
417 |
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
|
|
448 |
qkv_states = rearrange(
|
449 |
qkv_states,
|
450 |
"b q (h gs d) -> b q h gs d",
|
451 |
+
gs=2 + self.num_key_value_groups,
|
452 |
d=self.head_dim,
|
|
|
453 |
)
|
454 |
|
455 |
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
|
|
457 |
key_states = qkv_states[..., -2, :]
|
458 |
value_states = qkv_states[..., -1, :]
|
459 |
|
460 |
+
query_states = query_states.transpose(1, 2)
|
461 |
+
key_states = key_states.transpose(1, 2)
|
462 |
+
value_states = value_states.transpose(1, 2)
|
463 |
+
|
464 |
kv_seq_len = key_states.shape[-2]
|
465 |
if past_key_value is not None:
|
466 |
kv_seq_len += past_key_value[0].shape[-2]
|
|
|
480 |
key_states = key_states.transpose(1, 2)
|
481 |
value_states = value_states.transpose(1, 2)
|
482 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
attn_output = self._flash_attention_forward(
|
484 |
+
query_states, key_states, value_states, attention_mask, q_len
|
485 |
)
|
|
|
486 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
487 |
attn_output = self.wo(attn_output)
|
488 |
|
|
|
491 |
|
492 |
return attn_output, attn_weights, past_key_value
|
493 |
|
494 |
+
def _flash_attention_forward(
|
495 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
496 |
+
):
|
497 |
+
"""
|
498 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
499 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
500 |
+
|
501 |
+
Args:
|
502 |
+
query_states (`torch.Tensor`):
|
503 |
+
Input query states to be passed to Flash Attention API
|
504 |
+
key_states (`torch.Tensor`):
|
505 |
+
Input key states to be passed to Flash Attention API
|
506 |
+
value_states (`torch.Tensor`):
|
507 |
+
Input value states to be passed to Flash Attention API
|
508 |
+
attention_mask (`torch.Tensor`):
|
509 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
510 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
511 |
+
dropout (`int`, *optional*):
|
512 |
+
Attention dropout
|
513 |
+
softmax_scale (`float`, *optional*):
|
514 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
515 |
+
"""
|
516 |
+
# Contains at least one padding token in the sequence
|
517 |
+
causal = self.is_causal and query_length != 1
|
518 |
+
if attention_mask is not None:
|
519 |
+
batch_size = query_states.shape[0]
|
520 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
521 |
+
query_states, key_states, value_states, attention_mask, query_length
|
522 |
+
)
|
523 |
+
|
524 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
525 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
526 |
+
|
527 |
+
attn_output_unpad = flash_attn_varlen_func(
|
528 |
+
query_states,
|
529 |
+
key_states,
|
530 |
+
value_states,
|
531 |
+
cu_seqlens_q=cu_seqlens_q,
|
532 |
+
cu_seqlens_k=cu_seqlens_k,
|
533 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
534 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
535 |
+
dropout_p=dropout,
|
536 |
+
softmax_scale=softmax_scale,
|
537 |
+
causal=causal,
|
538 |
+
)
|
539 |
+
|
540 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
541 |
+
else:
|
542 |
+
attn_output = flash_attn_func(
|
543 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
544 |
+
)
|
545 |
+
|
546 |
+
return attn_output
|
547 |
+
|
548 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
549 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
550 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
551 |
+
|
552 |
+
key_layer = index_first_axis(
|
553 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
554 |
+
)
|
555 |
+
value_layer = index_first_axis(
|
556 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
557 |
+
)
|
558 |
+
|
559 |
+
if query_length == kv_seq_len:
|
560 |
+
query_layer = index_first_axis(
|
561 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
562 |
+
)
|
563 |
+
cu_seqlens_q = cu_seqlens_k
|
564 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
565 |
+
indices_q = indices_k
|
566 |
+
elif query_length == 1:
|
567 |
+
max_seqlen_in_batch_q = 1
|
568 |
+
cu_seqlens_q = torch.arange(
|
569 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
570 |
+
) # There is a memcpy here, that is very bad.
|
571 |
+
indices_q = cu_seqlens_q[:-1]
|
572 |
+
query_layer = query_layer.squeeze(1)
|
573 |
+
else:
|
574 |
+
# The -q_len: slice assumes left padding.
|
575 |
+
attention_mask = attention_mask[:, -query_length:]
|
576 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
577 |
+
|
578 |
+
return (
|
579 |
+
query_layer,
|
580 |
+
key_layer,
|
581 |
+
value_layer,
|
582 |
+
indices_q.to(torch.int64),
|
583 |
+
(cu_seqlens_q, cu_seqlens_k),
|
584 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
585 |
+
)
|
586 |
+
|
587 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
588 |
+
"eager": InternLM2Attention,
|
589 |
+
"flash_attention_2": InternLM2FlashAttention2,
|
590 |
+
}
|
591 |
|
592 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
593 |
class InternLM2DecoderLayer(nn.Module):
|
594 |
def __init__(self, config: InternLM2Config):
|
595 |
super().__init__()
|
596 |
self.hidden_size = config.hidden_size
|
597 |
+
|
598 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
599 |
+
|
|
|
|
|
600 |
self.feed_forward = InternLM2MLP(config)
|
601 |
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
602 |
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
681 |
"""
|
682 |
|
683 |
|
684 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
685 |
@add_start_docstrings(
|
686 |
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
687 |
InternLM2_START_DOCSTRING,
|
|
|
692 |
supports_gradient_checkpointing = True
|
693 |
_no_split_modules = ["InternLM2DecoderLayer"]
|
694 |
_skip_keys_device_placement = "past_key_values"
|
|
|
695 |
|
696 |
def _init_weights(self, module):
|
697 |
std = self.config.initializer_range
|
|
|
770 |
"""
|
771 |
|
772 |
|
773 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
774 |
@add_start_docstrings(
|
775 |
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
776 |
InternLM2_START_DOCSTRING,
|
|
|
789 |
super().__init__(config)
|
790 |
self.padding_idx = config.pad_token_id
|
791 |
self.vocab_size = config.vocab_size
|
792 |
+
self.config = config
|
793 |
|
794 |
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
795 |
+
|
796 |
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
797 |
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
798 |
|
|
|
806 |
def set_input_embeddings(self, value):
|
807 |
self.tok_embeddings = value
|
808 |
|
|
|
809 |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
810 |
# create causal mask
|
811 |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
|
850 |
|
851 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
852 |
|
853 |
+
if self.config.attn_implementation == "flash_attention_2":
|
854 |
+
_import_flash_attn()
|
855 |
+
|
856 |
# retrieve input_ids and inputs_embeds
|
857 |
if input_ids is not None and inputs_embeds is not None:
|
858 |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
|
878 |
|
879 |
if inputs_embeds is None:
|
880 |
inputs_embeds = self.tok_embeddings(input_ids)
|
881 |
+
|
882 |
+
if self.config.attn_implementation == "flash_attention_2":
|
883 |
+
# 2d mask is passed through the layers
|
884 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
885 |
+
else:
|
886 |
+
if attention_mask is None:
|
887 |
+
attention_mask = torch.ones(
|
888 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
889 |
+
)
|
890 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
891 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
892 |
)
|
|
|
|
|
|
|
893 |
|
894 |
# embed positions
|
895 |
hidden_states = inputs_embeds
|
|
|
963 |
)
|
964 |
|
965 |
|
966 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
967 |
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
968 |
_auto_class = "AutoModelForCausalLM"
|
969 |
|
|
|
1133 |
)
|
1134 |
return reordered_past
|
1135 |
|
1136 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=""):
|
1137 |
prompt = ""
|
1138 |
+
if meta_instruction:
|
1139 |
+
prompt += f"""<s><|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
1140 |
+
else:
|
1141 |
+
prompt += "<s>"
|
1142 |
for record in history:
|
1143 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
1144 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
|
|
1145 |
return tokenizer([prompt], return_tensors="pt")
|
1146 |
|
1147 |
@torch.no_grad()
|
|
|
1155 |
do_sample: bool = True,
|
1156 |
temperature: float = 0.8,
|
1157 |
top_p: float = 0.8,
|
1158 |
+
meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
|
1159 |
+
"- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
|
1160 |
+
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.",
|
1161 |
**kwargs,
|
1162 |
):
|
1163 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
1164 |
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
1165 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
1166 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
|
1167 |
outputs = self.generate(
|
1168 |
**inputs,
|
1169 |
streamer=streamer,
|
|
|
1171 |
do_sample=do_sample,
|
1172 |
temperature=temperature,
|
1173 |
top_p=top_p,
|
1174 |
+
eos_token_id=eos_token_id,
|
1175 |
**kwargs,
|
1176 |
)
|
1177 |
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
|
1178 |
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1179 |
+
response = response.split("<|im_end|>")[0]
|
1180 |
history = history + [(query, response)]
|
1181 |
return response, history
|
1182 |
|
|
|
1229 |
return
|
1230 |
|
1231 |
token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
|
1232 |
+
if token.strip() != "<|im_end|>":
|
1233 |
self.response = self.response + token
|
1234 |
history = self.history + [(self.query, self.response)]
|
1235 |
self.queue.put((self.response, history))
|
|
|
1262 |
return consumer()
|
1263 |
|
1264 |
|
1265 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
1266 |
@add_start_docstrings(
|
1267 |
"""
|
1268 |
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|