|
import os |
|
from shutil import copyfile |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple |
|
|
|
import sentencepiece as spm |
|
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer |
|
from transformers.utils import logging |
|
|
|
if TYPE_CHECKING: |
|
from transformers.tokenization_utils_base import TextInput |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} |
|
|
|
SPIECE_UNDERLINE = "▁" |
|
|
|
|
|
class InternLM3Tokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a InternLM3 tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is |
|
no padding token in the original model. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. |
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by |
|
attention mechanisms or loss computation. |
|
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*): |
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for |
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, |
|
to set: |
|
|
|
- `enable_sampling`: Enable subword regularization. |
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. |
|
|
|
- `nbest_size = {0,1}`: No sampling is performed. |
|
- `nbest_size > 1`: samples from the nbest_size results. |
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) |
|
using forward-filtering-and-backward-sampling algorithm. |
|
|
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for |
|
BPE-dropout. |
|
|
|
add_bos_token (`bool`, *optional*, defaults to `True`): |
|
Whether or not to add an `bos_token` at the start of sequences. |
|
add_eos_token (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an `eos_token` at the end of sequences. |
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like |
|
extra spaces. |
|
use_default_system_prompt (`bool`, *optional*, defaults to `False`): |
|
Whether or not the default system prompt for InternLM3 should be used. |
|
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add spaces between special tokens. |
|
spaces_for_interleaved_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add spaces between special tokens that are interleaved with normal tokens. |
|
add_prefix_space (`bool`, *optional*, defaults to `True`): |
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any |
|
other word. Again, this should be set with `from_slow=True` to make sure it's taken into account. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
unk_token="<unk>", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
pad_token=None, |
|
sp_model_kwargs: Optional[Dict[str, Any]] = None, |
|
add_bos_token=True, |
|
add_eos_token=False, |
|
clean_up_tokenization_spaces=False, |
|
use_default_system_prompt=False, |
|
spaces_between_special_tokens=False, |
|
spaces_for_interleaved_special_tokens=False, |
|
add_prefix_space=True, |
|
**kwargs, |
|
): |
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs |
|
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token |
|
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token |
|
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token |
|
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token |
|
|
|
self.vocab_file = vocab_file |
|
self.add_bos_token = add_bos_token |
|
self.add_eos_token = add_eos_token |
|
self.use_default_system_prompt = use_default_system_prompt |
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.Load(vocab_file) |
|
self.add_prefix_space = add_prefix_space |
|
self.spaces_for_interleaved_special_tokens = spaces_for_interleaved_special_tokens |
|
|
|
vocab_size = self.sp_model.get_piece_size() |
|
self.decoder = {i: self.sp_model.id_to_piece(i) for i in range(vocab_size)} |
|
|
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
add_bos_token=add_bos_token, |
|
add_eos_token=add_eos_token, |
|
sp_model_kwargs=sp_model_kwargs, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
use_default_system_prompt=use_default_system_prompt, |
|
spaces_between_special_tokens=spaces_between_special_tokens, |
|
add_prefix_space=add_prefix_space, |
|
**kwargs, |
|
) |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state["sp_model"] = None |
|
state["sp_model_proto"] = self.sp_model.serialized_model_proto() |
|
return state |
|
|
|
def __setstate__(self, d): |
|
self.__dict__.update(d) |
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.LoadFromSerializedProto(self.sp_model_proto) |
|
|
|
@property |
|
def vocab_size(self): |
|
"""Returns vocab size""" |
|
return self.sp_model.get_piece_size() |
|
|
|
def get_vocab(self): |
|
"""Returns vocab as a dict""" |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def tokenize(self, text: "TextInput", **kwargs) -> List[str]: |
|
""" |
|
Args: |
|
text: TextInput |
|
Simply calls PreTrainedTokenizer's method |
|
""" |
|
return super().tokenize(text, **kwargs) |
|
|
|
def _tokenize(self, text, **kwargs): |
|
""" |
|
Args: |
|
text: TextInput |
|
Returns a tokenized string. The Gemma tokenizer never adds a prefix space. |
|
""" |
|
return self.sp_model.encode(text, out_type=str) |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.sp_model.piece_to_id(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.decoder.get(index, "") |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
|
|
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space: |
|
tokens[0] = tokens[0][1:] |
|
|
|
current_sub_tokens = [] |
|
out_string = "" |
|
prev_is_special = False |
|
for i, token in enumerate(tokens): |
|
|
|
if token in self.all_special_tokens: |
|
if not prev_is_special and i != 0 and self.spaces_for_interleaved_special_tokens: |
|
out_string += " " |
|
out_string += self.sp_model.decode(current_sub_tokens) + token |
|
prev_is_special = True |
|
current_sub_tokens = [] |
|
else: |
|
if ( |
|
prev_is_special |
|
and i == 1 |
|
and self.add_prefix_space |
|
and not token.startswith(SPIECE_UNDERLINE) |
|
and self.spaces_for_interleaved_special_tokens |
|
): |
|
out_string += " " |
|
current_sub_tokens.append(token) |
|
prev_is_special = False |
|
out_string += self.sp_model.decode(current_sub_tokens) |
|
return out_string |
|
|
|
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
""" |
|
Save the vocabulary and special tokens file to a directory. |
|
|
|
Args: |
|
save_directory (`str`): |
|
The directory in which to save the vocabulary. |
|
|
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, "wb") as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
|
|
return (out_vocab_file,) |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id |
|
|
|
if token_ids_1 is not None: |
|
output = output + bos_token_id + token_ids_1 + eos_token_id |
|
|
|
return output |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True) |
|
|
|
bos_token_id = [1] if self.add_bos_token else [] |
|
eos_token_id = [1] if self.add_eos_token else [] |
|
|
|
if token_ids_1 is None: |
|
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id |
|
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id |
|
|
|
def create_token_type_ids_from_sequences(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]: |
|
""" |
|
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT |
|
sequence pair mask has the following format: |
|
|
|
``` |
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence | |
|
``` |
|
|
|
if token_ids_1 is None, only returns the first portion of the mask (0s). |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of ids. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). |
|
""" |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) |
|
|
|
if token_ids_1 is not None: |
|
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) |
|
|
|
return output |
|
|