Upload README.md
Browse files
README.md
CHANGED
@@ -86,7 +86,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
86 |
model_dir = "internlm/internlm3-8b-instruct"
|
87 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
88 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
89 |
-
|
90 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
91 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
92 |
# pip install -U bitsandbytes
|
@@ -357,7 +357,7 @@ print(outputs)
|
|
357 |
|
358 |
## Open Source License
|
359 |
|
360 |
-
|
361 |
|
362 |
## Citation
|
363 |
|
@@ -435,7 +435,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
435 |
model_dir = "internlm/internlm3-8b-instruct"
|
436 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
437 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
438 |
-
|
439 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
440 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
441 |
# pip install -U bitsandbytes
|
@@ -712,7 +712,7 @@ print(outputs)
|
|
712 |
|
713 |
## 开源许可证
|
714 |
|
715 |
-
|
716 |
|
717 |
## 引用
|
718 |
|
|
|
86 |
model_dir = "internlm/internlm3-8b-instruct"
|
87 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
88 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
89 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
|
90 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
91 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
92 |
# pip install -U bitsandbytes
|
|
|
357 |
|
358 |
## Open Source License
|
359 |
|
360 |
+
Code and model weights are licensed under Apache-2.0.
|
361 |
|
362 |
## Citation
|
363 |
|
|
|
435 |
model_dir = "internlm/internlm3-8b-instruct"
|
436 |
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
437 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
438 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.float16)
|
439 |
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
440 |
# InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
|
441 |
# pip install -U bitsandbytes
|
|
|
712 |
|
713 |
## 开源许可证
|
714 |
|
715 |
+
本仓库的代码和权重依照 Apache-2.0 协议开源。
|
716 |
|
717 |
## 引用
|
718 |
|