File size: 10,333 Bytes
2339d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fbda94
2339d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
tags:
- generated_from_trainer
- retnet
model-index:
- name: sdprompt-retnet-300m
  results: []
license: mit
datasets:
- Gustavosta/Stable-Diffusion-Prompts
- FredZhang7/anime-prompts-180K
language:
- en
library_name: transformers
pipeline_tag: text-generation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SDPrompt-RetNet-300M

This model is a RetNet model trained from scratch using https://github.com/syncdoth/RetNet.
It achieves the following results on the evaluation set:
- Loss: 0.3616

## Usage

```
pip install transformers safetensors timm
```

```py
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

MODEL_NAME = "isek-ai/SDPrompt-RetNet-300M"

DEVICE = "cuda"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    trust_remote_code=True,
).to(DEVICE)

streamer = TextStreamer(tokenizer)

prompt = "<s>1girl"

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

_ = model.generate(
    inputs["input_ids"],
    max_new_tokens=256,
    do_sample=True,
    top_p=0.9,
    top_k=20,
    temperature=0.9,
    streamer=streamer,
)
# <s> 1girl, absurdres, animal ear fluff, animal ears, bangs, bare shoulders, black hair, blue archive, blunt bangs, blush, closed mouth, collarbone, commentary request, eyes visible through hair, green eyes, hair between eyes, halo, hand on own face, hand up, highres, jacket, kisaki blue archive, long hair, long sleeves, looking at viewer, open clothes, open jacket, shinonome asu, simple background, solo, track jacket, upper body, white background, white jacket</s>
```

## Model description

This model is trained with Stable Diffusion prompts and Danbooru tags to generate prompts for image generation models.

## Training data

- [Gustavosta/Stable-Diffusion-Prompts](https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts)
- [FredZhang7/anime-prompts-180K](https://huggingface.co/datasets/FredZhang7/anime-prompts-180K)


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 2.6714        | 0.03  | 1000   | 2.5787          |
| 2.1551        | 0.07  | 2000   | 2.3981          |
| 2.1439        | 0.1   | 3000   | 2.1160          |
| 1.8406        | 0.14  | 4000   | 1.9138          |
| 1.7485        | 0.17  | 5000   | 1.7847          |
| 1.6417        | 0.21  | 6000   | 1.7120          |
| 1.6084        | 0.24  | 7000   | 1.6055          |
| 1.4805        | 0.28  | 8000   | 1.5946          |
| 1.5524        | 0.31  | 9000   | 1.5027          |
| 1.4425        | 0.35  | 10000  | 1.4876          |
| 1.4007        | 0.38  | 11000  | 1.4364          |
| 1.4637        | 0.42  | 12000  | 1.3896          |
| 1.3211        | 0.45  | 13000  | 1.3968          |
| 1.3246        | 0.49  | 14000  | 1.3403          |
| 1.3461        | 0.52  | 15000  | 1.3156          |
| 1.2897        | 0.56  | 16000  | 1.2977          |
| 1.2748        | 0.59  | 17000  | 1.2823          |
| 1.2424        | 0.62  | 18000  | 1.2649          |
| 1.348         | 0.66  | 19000  | 1.2134          |
| 1.1797        | 0.69  | 20000  | 1.2030          |
| 1.2116        | 0.73  | 21000  | 1.2033          |
| 1.1702        | 0.76  | 22000  | 1.1453          |
| 1.1027        | 0.8   | 23000  | 1.1597          |
| 1.1932        | 0.83  | 24000  | 1.1506          |
| 1.3669        | 0.87  | 25000  | 1.1428          |
| 1.0705        | 0.9   | 26000  | 1.1239          |
| 1.1474        | 0.94  | 27000  | 1.1239          |
| 1.0879        | 0.97  | 28000  | 1.1168          |
| 0.9879        | 1.01  | 29000  | 1.0848          |
| 0.9928        | 1.04  | 30000  | 1.0953          |
| 0.9095        | 1.08  | 31000  | 1.1043          |
| 1.0423        | 1.11  | 32000  | 1.0823          |
| 0.9478        | 1.15  | 33000  | 1.0840          |
| 0.9979        | 1.18  | 34000  | 1.0387          |
| 1.0316        | 1.22  | 35000  | 1.0282          |
| 1.0531        | 1.25  | 36000  | 1.0369          |
| 0.919         | 1.28  | 37000  | 1.0398          |
| 1.0596        | 1.32  | 38000  | 1.0410          |
| 0.9076        | 1.35  | 39000  | 0.9889          |
| 0.9698        | 1.39  | 40000  | 1.0004          |
| 0.9633        | 1.42  | 41000  | 1.0038          |
| 0.9622        | 1.46  | 42000  | 0.9933          |
| 0.9809        | 1.49  | 43000  | 0.9805          |
| 0.9496        | 1.53  | 44000  | 0.9755          |
| 0.9435        | 1.56  | 45000  | 0.9759          |
| 0.9337        | 1.6   | 46000  | 0.9615          |
| 0.8844        | 1.63  | 47000  | 0.9524          |
| 0.9039        | 1.67  | 48000  | 0.9567          |
| 0.905         | 1.7   | 49000  | 0.9430          |
| 0.9491        | 1.74  | 50000  | 0.9205          |
| 0.8464        | 1.77  | 51000  | 0.9109          |
| 0.9384        | 1.81  | 52000  | 0.9056          |
| 0.8121        | 1.84  | 53000  | 0.8969          |
| 0.8381        | 1.88  | 54000  | 0.8869          |
| 0.8171        | 1.91  | 55000  | 0.8946          |
| 0.9024        | 1.94  | 56000  | 0.8993          |
| 0.84          | 1.98  | 57000  | 0.9011          |
| 0.6702        | 2.01  | 58000  | 0.8876          |
| 0.6278        | 2.05  | 59000  | 0.8716          |
| 0.6876        | 2.08  | 60000  | 0.8546          |
| 0.6754        | 2.12  | 61000  | 0.8639          |
| 0.6479        | 2.15  | 62000  | 0.8425          |
| 0.698         | 2.19  | 63000  | 0.8533          |
| 0.708         | 2.22  | 64000  | 0.8407          |
| 0.7021        | 2.26  | 65000  | 0.8160          |
| 0.5881        | 2.29  | 66000  | 0.8251          |
| 0.6181        | 2.33  | 67000  | 0.8205          |
| 0.6789        | 2.36  | 68000  | 0.8066          |
| 0.6452        | 2.4   | 69000  | 0.8037          |
| 0.6483        | 2.43  | 70000  | 0.7915          |
| 0.5868        | 2.47  | 71000  | 0.7864          |
| 0.6257        | 2.5   | 72000  | 0.7895          |
| 0.6593        | 2.53  | 73000  | 0.7718          |
| 0.5957        | 2.57  | 74000  | 0.7490          |
| 0.6351        | 2.6   | 75000  | 0.7481          |
| 0.699         | 2.64  | 76000  | 0.7628          |
| 0.566         | 2.67  | 77000  | 0.7590          |
| 0.5892        | 2.71  | 78000  | 0.7628          |
| 0.6052        | 2.74  | 79000  | 0.7633          |
| 0.6494        | 2.78  | 80000  | 0.7588          |
| 0.5917        | 2.81  | 81000  | 0.7118          |
| 0.508         | 2.85  | 82000  | 0.6857          |
| 0.523         | 2.88  | 83000  | 0.6738          |
| 0.4894        | 2.92  | 84000  | 0.6713          |
| 0.5096        | 2.95  | 85000  | 0.6625          |
| 0.352         | 2.99  | 86000  | 0.6802          |
| 0.3927        | 3.02  | 87000  | 0.6606          |
| 0.3468        | 3.06  | 88000  | 0.6546          |
| 0.3368        | 3.09  | 89000  | 0.6520          |
| 0.352         | 3.12  | 90000  | 0.6495          |
| 0.3613        | 3.16  | 91000  | 0.6324          |
| 0.3501        | 3.19  | 92000  | 0.6227          |
| 0.3269        | 3.23  | 93000  | 0.6091          |
| 0.3583        | 3.26  | 94000  | 0.6153          |
| 0.3278        | 3.3   | 95000  | 0.6178          |
| 0.3216        | 3.33  | 96000  | 0.6208          |
| 0.3383        | 3.37  | 97000  | 0.6195          |
| 0.3326        | 3.4   | 98000  | 0.6088          |
| 0.3081        | 3.44  | 99000  | 0.5956          |
| 0.3459        | 3.47  | 100000 | 0.5840          |
| 0.3139        | 3.51  | 101000 | 0.5712          |
| 0.3087        | 3.54  | 102000 | 0.5677          |
| 0.2798        | 3.58  | 103000 | 0.5566          |
| 0.3166        | 3.61  | 104000 | 0.5332          |
| 0.2981        | 3.65  | 105000 | 0.5333          |
| 0.3027        | 3.68  | 106000 | 0.5276          |
| 0.2815        | 3.72  | 107000 | 0.5024          |
| 0.2294        | 3.75  | 108000 | 0.5081          |
| 0.2452        | 3.78  | 109000 | 0.4824          |
| 0.2733        | 3.82  | 110000 | 0.4695          |
| 0.3001        | 3.85  | 111000 | 0.4627          |
| 0.2322        | 3.89  | 112000 | 0.4580          |
| 0.2362        | 3.92  | 113000 | 0.4402          |
| 0.2488        | 3.96  | 114000 | 0.4263          |
| 0.2449        | 3.99  | 115000 | 0.3999          |
| 0.1798        | 4.03  | 116000 | 0.4038          |
| 0.1956        | 4.06  | 117000 | 0.4037          |
| 0.1831        | 4.1   | 118000 | 0.4040          |
| 0.1802        | 4.13  | 119000 | 0.4039          |
| 0.1641        | 4.17  | 120000 | 0.4029          |
| 0.1769        | 4.2   | 121000 | 0.4016          |
| 0.1564        | 4.24  | 122000 | 0.4026          |
| 0.1552        | 4.27  | 123000 | 0.3988          |
| 0.1806        | 4.31  | 124000 | 0.3995          |
| 0.1783        | 4.34  | 125000 | 0.3995          |
| 0.1736        | 4.38  | 126000 | 0.3940          |
| 0.1657        | 4.41  | 127000 | 0.3913          |
| 0.1598        | 4.44  | 128000 | 0.3871          |
| 0.1599        | 4.48  | 129000 | 0.3831          |
| 0.1606        | 4.51  | 130000 | 0.3776          |
| 0.1639        | 4.55  | 131000 | 0.3754          |
| 0.1736        | 4.58  | 132000 | 0.3742          |
| 0.1653        | 4.62  | 133000 | 0.3703          |
| 0.1708        | 4.65  | 134000 | 0.3681          |
| 0.1729        | 4.69  | 135000 | 0.3674          |
| 0.1564        | 4.72  | 136000 | 0.3660          |
| 0.1734        | 4.76  | 137000 | 0.3641          |
| 0.163         | 4.79  | 138000 | 0.3632          |
| 0.1585        | 4.83  | 139000 | 0.3626          |
| 0.1603        | 4.86  | 140000 | 0.3619          |
| 0.1751        | 4.9   | 141000 | 0.3617          |
| 0.1622        | 4.93  | 142000 | 0.3617          |
| 0.161         | 4.97  | 143000 | 0.3617          |
| 0.1541        | 5.0   | 144000 | 0.3616          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0