File size: 1,797 Bytes
1087326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: EleutherAI/gpt-neo-125m
metrics:
- accuracy
model-index:
- name: mod_dep_fl-PEFT_mix-instruct
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mod_dep_fl-PEFT_mix-instruct

This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5502
- Accuracy: -1701.4273

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy   |
|:-------------:|:------:|:----:|:---------------:|:----------:|
| 4.5917        | 0.9524 | 10   | 2.8083          | -1780.3744 |
| 3.7289        | 2.0    | 21   | 2.6099          | -1691.0399 |
| 3.548         | 2.9524 | 31   | 2.5788          | -1751.4823 |
| 3.5153        | 4.0    | 42   | 2.5515          | -1766.1752 |
| 3.4735        | 4.7619 | 50   | 2.5502          | -1701.4273 |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1