isoformer-anonymous commited on
Commit
0b3aec7
1 Parent(s): 33742a2

Delete modeling_esm.ppy

Browse files
Files changed (1) hide show
  1. modeling_esm.ppy +0 -1620
modeling_esm.ppy DELETED
@@ -1,1620 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """ PyTorch ESM model."""
16
-
17
- import math
18
- from typing import Dict, List, Optional, Tuple, Union
19
-
20
- import torch
21
- import torch.utils.checkpoint
22
- from torch import nn
23
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss, SiLU
24
- from transformers.file_utils import (
25
- add_code_sample_docstrings,
26
- add_start_docstrings,
27
- add_start_docstrings_to_model_forward,
28
- )
29
- from transformers.modeling_outputs import (
30
- BaseModelOutputWithPastAndCrossAttentions,
31
- BaseModelOutputWithPoolingAndCrossAttentions,
32
- MaskedLMOutput,
33
- SequenceClassifierOutput,
34
- TokenClassifierOutput,
35
- )
36
- from transformers.modeling_utils import (
37
- PreTrainedModel,
38
- find_pruneable_heads_and_indices,
39
- prune_linear_layer,
40
- )
41
- from transformers.utils import logging
42
-
43
- from .esm_config import NTConfig
44
-
45
- logger = logging.get_logger(__name__)
46
-
47
- _CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
48
- _CONFIG_FOR_DOC = "NTConfig"
49
-
50
- ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [
51
- "facebook/esm2_t6_8M_UR50D",
52
- "facebook/esm2_t12_35M_UR50D",
53
- # This is not a complete list of all ESM models!
54
- # See all ESM models at https://huggingface.co/models?filter=esm
55
- ]
56
-
57
-
58
- def rotate_half(x):
59
- x1, x2 = x.chunk(2, dim=-1)
60
- return torch.cat((-x2, x1), dim=-1)
61
-
62
-
63
- def apply_rotary_pos_emb(x, cos, sin):
64
- cos = cos[:, :, : x.shape[-2], :]
65
- sin = sin[:, :, : x.shape[-2], :]
66
-
67
- return (x * cos) + (rotate_half(x) * sin)
68
-
69
-
70
- def gelu(x):
71
- """
72
- This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results.
73
- """
74
- return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
75
-
76
-
77
- def symmetrize(x):
78
- "Make layer symmetric in final two dimensions, used for contact prediction."
79
- return x + x.transpose(-1, -2)
80
-
81
-
82
- def average_product_correct(x):
83
- "Perform average product correct, used for contact prediction."
84
- a1 = x.sum(-1, keepdims=True)
85
- a2 = x.sum(-2, keepdims=True)
86
- a12 = x.sum((-1, -2), keepdims=True)
87
-
88
- avg = a1 * a2
89
- avg.div_(a12) # in-place to reduce memory
90
- normalized = x - avg
91
- return normalized
92
-
93
-
94
- class RotaryEmbedding(torch.nn.Module):
95
- """
96
- Rotary position embeddings based on those in
97
- [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
98
- matrices which depend on their relative positions.
99
- """
100
-
101
- def __init__(self, dim: int):
102
- super().__init__()
103
- # Generate and save the inverse frequency buffer (non trainable)
104
- inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
105
- inv_freq = inv_freq
106
- self.register_buffer("inv_freq", inv_freq)
107
-
108
- self._seq_len_cached = None
109
- self._cos_cached = None
110
- self._sin_cached = None
111
-
112
- def _update_cos_sin_tables(self, x, seq_dimension=2):
113
- seq_len = x.shape[seq_dimension]
114
-
115
- # Reset the tables if the sequence length has changed,
116
- # or if we're on a new device (possibly due to tracing for instance)
117
- if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
118
- self._seq_len_cached = seq_len
119
- t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(
120
- self.inv_freq
121
- )
122
- freqs = torch.outer(t, self.inv_freq)
123
- emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
124
-
125
- self._cos_cached = emb.cos()[None, None, :, :]
126
- self._sin_cached = emb.sin()[None, None, :, :]
127
-
128
- return self._cos_cached, self._sin_cached
129
-
130
- def forward(
131
- self, q: torch.Tensor, k: torch.Tensor
132
- ) -> Tuple[torch.Tensor, torch.Tensor]:
133
- self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
134
- k, seq_dimension=-2
135
- )
136
-
137
- return (
138
- apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
139
- apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
140
- )
141
-
142
-
143
- class EsmContactPredictionHead(nn.Module):
144
- """Performs symmetrization, apc, and computes a logistic regression on the output features"""
145
-
146
- def __init__(
147
- self,
148
- in_features: int,
149
- bias=True,
150
- eos_idx: int = 2,
151
- ):
152
- super().__init__()
153
- self.in_features = in_features
154
- self.eos_idx = eos_idx
155
- self.regression = nn.Linear(in_features, 1, bias)
156
- self.activation = nn.Sigmoid()
157
-
158
- def forward(self, tokens, attentions):
159
- # remove eos token attentions
160
- eos_mask = tokens.ne(self.eos_idx).to(attentions)
161
- eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
162
- attentions = attentions * eos_mask[:, None, None, :, :]
163
- attentions = attentions[..., :-1, :-1]
164
- # remove cls token attentions
165
- attentions = attentions[..., 1:, 1:]
166
- batch_size, layers, heads, seqlen, _ = attentions.size()
167
- attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
168
-
169
- # features: batch x channels x tokens x tokens (symmetric)
170
- attentions = attentions.to(
171
- self.regression.weight.device
172
- ) # attentions always float32, may need to convert to float16
173
- attentions = average_product_correct(symmetrize(attentions))
174
- attentions = attentions.permute(0, 2, 3, 1)
175
- return self.activation(self.regression(attentions).squeeze(3))
176
-
177
-
178
- class EsmEmbeddings(nn.Module):
179
- """
180
- Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
181
- """
182
-
183
- def __init__(self, config):
184
- super().__init__()
185
- self.word_embeddings = nn.Embedding(
186
- config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
187
- )
188
-
189
- if config.emb_layer_norm_before:
190
- self.layer_norm = nn.LayerNorm(
191
- config.hidden_size, eps=config.layer_norm_eps
192
- )
193
- else:
194
- self.layer_norm = None
195
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
196
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
197
- self.position_embedding_type = getattr(
198
- config, "position_embedding_type", "absolute"
199
- )
200
- self.register_buffer(
201
- "position_ids",
202
- torch.arange(config.max_position_embeddings).expand((1, -1)),
203
- persistent=False,
204
- )
205
-
206
- self.padding_idx = config.pad_token_id
207
- self.position_embeddings = nn.Embedding(
208
- config.max_position_embeddings,
209
- config.hidden_size,
210
- padding_idx=self.padding_idx,
211
- )
212
- self.token_dropout = config.token_dropout
213
- self.mask_token_id = config.mask_token_id
214
-
215
- def forward(
216
- self,
217
- input_ids=None,
218
- attention_mask=None,
219
- position_ids=None,
220
- inputs_embeds=None,
221
- past_key_values_length=0,
222
- ):
223
- if position_ids is None:
224
- if input_ids is not None:
225
- # Create the position ids from the input token ids. Any padded tokens remain padded.
226
- position_ids = create_position_ids_from_input_ids(
227
- input_ids, self.padding_idx, past_key_values_length
228
- )
229
- else:
230
- position_ids = self.create_position_ids_from_inputs_embeds(
231
- inputs_embeds
232
- )
233
-
234
- if inputs_embeds is None:
235
- inputs_embeds = self.word_embeddings(input_ids)
236
-
237
- # Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
238
- # embedding_scale factor here.
239
- embeddings = inputs_embeds
240
-
241
- # Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
242
- # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
243
- # masked tokens are treated as if they were selected for input dropout and zeroed out.
244
- # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
245
- # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
246
- # This is analogous to the way that dropout layers scale down outputs during evaluation when not
247
- # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
248
- if self.token_dropout:
249
- embeddings.masked_fill_(
250
- (input_ids == self.mask_token_id).unsqueeze(-1), 0.0
251
- )
252
- mask_ratio_train = (
253
- 0.15 * 0.8
254
- ) # Hardcoded as the ratio used in all ESM model training runs
255
- src_lengths = attention_mask.sum(-1)
256
- mask_ratio_observed = (input_ids == self.mask_token_id).sum(
257
- -1
258
- ).float() / src_lengths
259
- embeddings = (
260
- embeddings
261
- * (1 - mask_ratio_train)
262
- / (1 - mask_ratio_observed)[:, None, None]
263
- ).to(embeddings.dtype)
264
-
265
- if self.position_embedding_type == "absolute":
266
- position_embeddings = self.position_embeddings(position_ids)
267
- embeddings += position_embeddings
268
-
269
- if self.layer_norm is not None:
270
- embeddings = self.layer_norm(embeddings)
271
- # if attention_mask is not None:
272
- # embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(
273
- # embeddings.dtype
274
- # )
275
- # FIRST DIFF BETWEEN JAX AND TORCH
276
- # Matt: I think this line was copied incorrectly from BERT, disabling it for now.
277
- # embeddings = self.dropout(embeddings)
278
- return embeddings
279
-
280
- def create_position_ids_from_inputs_embeds(self, inputs_embeds):
281
- """
282
- We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
283
- Args:
284
- inputs_embeds: torch.Tensor
285
- Returns: torch.Tensor
286
- """
287
- input_shape = inputs_embeds.size()[:-1]
288
- sequence_length = input_shape[1]
289
-
290
- position_ids = torch.arange(
291
- self.padding_idx + 1,
292
- sequence_length + self.padding_idx + 1,
293
- dtype=torch.long,
294
- device=inputs_embeds.device,
295
- )
296
- return position_ids.unsqueeze(0).expand(input_shape)
297
-
298
-
299
- class EsmSelfAttention(nn.Module):
300
- def __init__(self, config, position_embedding_type=None):
301
- super().__init__()
302
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
303
- config, "embedding_size"
304
- ):
305
- raise ValueError(
306
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
307
- f"heads ({config.num_attention_heads})"
308
- )
309
-
310
- self.num_attention_heads = config.num_attention_heads
311
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
312
- self.all_head_size = self.num_attention_heads * self.attention_head_size
313
-
314
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
315
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
316
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
317
-
318
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
319
- self.position_embedding_type = position_embedding_type or getattr(
320
- config, "position_embedding_type", "absolute"
321
- )
322
- self.rotary_embeddings = None
323
- if (
324
- self.position_embedding_type == "relative_key"
325
- or self.position_embedding_type == "relative_key_query"
326
- ):
327
- self.max_position_embeddings = config.max_position_embeddings
328
- self.distance_embedding = nn.Embedding(
329
- 2 * config.max_position_embeddings - 1, self.attention_head_size
330
- )
331
- elif self.position_embedding_type == "rotary":
332
- self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
333
-
334
- self.is_decoder = config.is_decoder
335
-
336
- def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
337
- new_x_shape = x.size()[:-1] + (
338
- self.num_attention_heads,
339
- self.attention_head_size,
340
- )
341
- x = x.view(new_x_shape)
342
- return x.permute(0, 2, 1, 3)
343
-
344
- def forward(
345
- self,
346
- hidden_states: torch.Tensor,
347
- attention_mask: Optional[torch.FloatTensor] = None,
348
- head_mask: Optional[torch.FloatTensor] = None,
349
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
350
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
351
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
352
- output_attentions: Optional[bool] = False,
353
- ) -> Tuple[torch.Tensor]:
354
- mixed_query_layer = self.query(hidden_states)
355
-
356
- # If this is instantiated as a cross-attention module, the keys
357
- # and values come from an encoder; the attention mask needs to be
358
- # such that the encoder's padding tokens are not attended to.
359
- is_cross_attention = encoder_hidden_states is not None
360
-
361
- if is_cross_attention and past_key_value is not None:
362
- # reuse k,v, cross_attentions
363
- key_layer = past_key_value[0]
364
- value_layer = past_key_value[1]
365
- attention_mask = encoder_attention_mask
366
- elif is_cross_attention:
367
- key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
368
- value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
369
- attention_mask = encoder_attention_mask
370
- elif past_key_value is not None:
371
- key_layer = self.transpose_for_scores(self.key(hidden_states))
372
- value_layer = self.transpose_for_scores(self.value(hidden_states))
373
- key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
374
- value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
375
- else:
376
- key_layer = self.transpose_for_scores(self.key(hidden_states))
377
- value_layer = self.transpose_for_scores(self.value(hidden_states))
378
-
379
- query_layer = self.transpose_for_scores(mixed_query_layer)
380
-
381
- # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
382
- # ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
383
- # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
384
- # ESM code and fix rotary embeddings.
385
- query_layer = query_layer * self.attention_head_size**-0.5
386
-
387
- if self.is_decoder:
388
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
389
- # Further calls to cross_attention layer can then reuse all cross-attention
390
- # key/value_states (first "if" case)
391
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
392
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
393
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
394
- # if encoder bi-directional self-attention `past_key_value` is always `None`
395
- past_key_value = (key_layer, value_layer)
396
-
397
- if self.position_embedding_type == "rotary":
398
- query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
399
-
400
- # Take the dot product between "query" and "key" to get the raw attention scores.
401
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
402
-
403
- if (
404
- self.position_embedding_type == "relative_key"
405
- or self.position_embedding_type == "relative_key_query"
406
- ):
407
- seq_length = hidden_states.size()[1]
408
- position_ids_l = torch.arange(
409
- seq_length, dtype=torch.long, device=hidden_states.device
410
- ).view(-1, 1)
411
- position_ids_r = torch.arange(
412
- seq_length, dtype=torch.long, device=hidden_states.device
413
- ).view(1, -1)
414
- distance = position_ids_l - position_ids_r
415
- positional_embedding = self.distance_embedding(
416
- distance + self.max_position_embeddings - 1
417
- )
418
- positional_embedding = positional_embedding.to(
419
- dtype=query_layer.dtype
420
- ) # fp16 compatibility
421
-
422
- if self.position_embedding_type == "relative_key":
423
- relative_position_scores = torch.einsum(
424
- "bhld,lrd->bhlr", query_layer, positional_embedding
425
- )
426
- attention_scores = attention_scores + relative_position_scores
427
- elif self.position_embedding_type == "relative_key_query":
428
- relative_position_scores_query = torch.einsum(
429
- "bhld,lrd->bhlr", query_layer, positional_embedding
430
- )
431
- relative_position_scores_key = torch.einsum(
432
- "bhrd,lrd->bhlr", key_layer, positional_embedding
433
- )
434
- attention_scores = (
435
- attention_scores
436
- + relative_position_scores_query
437
- + relative_position_scores_key
438
- )
439
-
440
- if attention_mask is not None:
441
- attention_scores = attention_scores + attention_mask
442
-
443
- # Normalize the attention scores to probabilities.
444
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
445
- attention_mask_widened = attention_mask.repeat(
446
- attention_probs.shape[0],
447
- attention_probs.shape[1],
448
- attention_probs.shape[2],
449
- 1
450
- ).permute(0,1,3,2) == 0
451
- attention_probs = torch.where(attention_mask_widened, attention_probs, 0.00097656)
452
- # SECOND DIFF BETWEEN JAX AND TORCH
453
-
454
- # This is actually dropping out entire tokens to attend to, which might
455
- # seem a bit unusual, but is taken from the original Transformer paper.
456
- attention_probs = self.dropout(attention_probs)
457
-
458
- # Mask heads if we want to
459
- if head_mask is not None:
460
- attention_probs = attention_probs * head_mask
461
-
462
- context_layer = torch.matmul(attention_probs, value_layer)
463
-
464
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
465
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
466
- context_layer = context_layer.view(new_context_layer_shape)
467
-
468
- outputs = (
469
- (context_layer, attention_probs) if output_attentions else (context_layer,)
470
- )
471
-
472
- if self.is_decoder:
473
- outputs = outputs + (past_key_value,)
474
- return outputs
475
-
476
-
477
- class EsmSelfOutput(nn.Module):
478
- def __init__(self, config):
479
- super().__init__()
480
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
481
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
482
-
483
- def forward(self, hidden_states, input_tensor):
484
- hidden_states = self.dense(hidden_states)
485
- hidden_states = self.dropout(hidden_states)
486
- hidden_states += input_tensor
487
- return hidden_states
488
-
489
-
490
- class EsmAttention(nn.Module):
491
- def __init__(self, config):
492
- super().__init__()
493
- self.self = EsmSelfAttention(config)
494
- self.output = EsmSelfOutput(config)
495
- self.pruned_heads = set()
496
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
497
-
498
- def prune_heads(self, heads):
499
- if len(heads) == 0:
500
- return
501
- heads, index = find_pruneable_heads_and_indices(
502
- heads,
503
- self.self.num_attention_heads,
504
- self.self.attention_head_size,
505
- self.pruned_heads,
506
- )
507
-
508
- # Prune linear layers
509
- self.self.query = prune_linear_layer(self.self.query, index)
510
- self.self.key = prune_linear_layer(self.self.key, index)
511
- self.self.value = prune_linear_layer(self.self.value, index)
512
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
513
-
514
- # Update hyper params and store pruned heads
515
- self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
516
- self.self.all_head_size = (
517
- self.self.attention_head_size * self.self.num_attention_heads
518
- )
519
- self.pruned_heads = self.pruned_heads.union(heads)
520
-
521
- def forward(
522
- self,
523
- hidden_states,
524
- attention_mask=None,
525
- head_mask=None,
526
- encoder_hidden_states=None,
527
- encoder_attention_mask=None,
528
- past_key_value=None,
529
- output_attentions=False,
530
- ):
531
- hidden_states_ln = self.LayerNorm(hidden_states)
532
- self_outputs = self.self(
533
- hidden_states_ln,
534
- attention_mask,
535
- head_mask,
536
- encoder_hidden_states,
537
- encoder_attention_mask,
538
- past_key_value,
539
- output_attentions,
540
- )
541
- attention_output = self.output(self_outputs[0], hidden_states)
542
- outputs = (attention_output,) + self_outputs[
543
- 1:
544
- ] # add attentions if we output them
545
- return outputs
546
-
547
-
548
- class MultiHeadAttention(nn.Module):
549
- def __init__(self, config, omics_of_interest_size: int, other_omic_size: int, position_embedding_type=None):
550
- super().__init__()
551
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
552
- config, "embedding_size"
553
- ):
554
- raise ValueError(
555
- f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
556
- f"heads ({config.num_attention_heads})"
557
- )
558
-
559
- self.num_attention_heads = config.num_attention_heads
560
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
561
- self.all_head_size = self.num_attention_heads * self.attention_head_size
562
-
563
- self.query = nn.Linear(omics_of_interest_size, omics_of_interest_size) # 3072, 3072
564
-
565
- self.key = nn.Linear(other_omic_size, omics_of_interest_size) # 768, 3072
566
-
567
- self.value = nn.Linear(other_omic_size, omics_of_interest_size) # 768, 3072
568
-
569
- self.dense = nn.Linear(omics_of_interest_size, omics_of_interest_size) # 3072, 3072
570
-
571
-
572
- #self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
573
- self.position_embedding_type = position_embedding_type or getattr(
574
- config, "position_embedding_type", "absolute"
575
- )
576
- self.rotary_embeddings = None
577
- if (
578
- self.position_embedding_type == "relative_key"
579
- or self.position_embedding_type == "relative_key_query"
580
- ):
581
- self.max_position_embeddings = config.max_position_embeddings
582
- self.distance_embedding = nn.Embedding(
583
- 2 * config.max_position_embeddings - 1, self.attention_head_size
584
- )
585
- elif self.position_embedding_type == "rotary":
586
- self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
587
-
588
- self.is_decoder = config.is_decoder
589
-
590
- def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
591
- new_x_shape = x.size()[:-1] + (
592
- self.num_attention_heads,
593
- self.attention_head_size,
594
- )
595
- x = x.view(new_x_shape)
596
- return x.permute(0, 2, 1, 3)
597
-
598
- def forward(
599
- self,
600
- hidden_states: torch.Tensor,
601
- attention_mask: Optional[torch.FloatTensor] = None,
602
- head_mask: Optional[torch.FloatTensor] = None,
603
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
604
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
605
- past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
606
- output_attentions: Optional[bool] = False,
607
- ) -> Dict[str, torch.Tensor]:
608
- mixed_query_layer = self.query(hidden_states)
609
-
610
- # If this is instantiated as a cross-attention module, the keys
611
- # and values come from an encoder; the attention mask needs to be
612
- # such that the encoder's padding tokens are not attended to.
613
- is_cross_attention = encoder_hidden_states is not None
614
-
615
- if is_cross_attention and past_key_value is not None:
616
- # reuse k,v, cross_attentions
617
- key_layer = past_key_value[0]
618
- value_layer = past_key_value[1]
619
- attention_mask = encoder_attention_mask
620
- elif is_cross_attention:
621
- key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
622
- value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
623
- attention_mask = encoder_attention_mask
624
- elif past_key_value is not None:
625
- key_layer = self.transpose_for_scores(self.key(hidden_states))
626
- value_layer = self.transpose_for_scores(self.value(hidden_states))
627
- key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
628
- value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
629
- else:
630
- key_layer = self.transpose_for_scores(self.key(hidden_states))
631
- value_layer = self.transpose_for_scores(self.value(hidden_states))
632
-
633
- query_layer = self.transpose_for_scores(mixed_query_layer)
634
-
635
- # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
636
- # ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
637
- # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
638
- # ESM code and fix rotary embeddings.
639
- query_layer = query_layer * self.attention_head_size**-0.5
640
-
641
- if self.is_decoder:
642
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
643
- # Further calls to cross_attention layer can then reuse all cross-attention
644
- # key/value_states (first "if" case)
645
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
646
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
647
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
648
- # if encoder bi-directional self-attention `past_key_value` is always `None`
649
- past_key_value = (key_layer, value_layer)
650
-
651
- if self.position_embedding_type == "rotary":
652
- query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
653
-
654
- # Take the dot product between "query" and "key" to get the raw attention scores.
655
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
656
-
657
- if (
658
- self.position_embedding_type == "relative_key"
659
- or self.position_embedding_type == "relative_key_query"
660
- ):
661
- seq_length = hidden_states.size()[1]
662
- position_ids_l = torch.arange(
663
- seq_length, dtype=torch.long, device=hidden_states.device
664
- ).view(-1, 1)
665
- position_ids_r = torch.arange(
666
- seq_length, dtype=torch.long, device=hidden_states.device
667
- ).view(1, -1)
668
- distance = position_ids_l - position_ids_r
669
- positional_embedding = self.distance_embedding(
670
- distance + self.max_position_embeddings - 1
671
- )
672
- positional_embedding = positional_embedding.to(
673
- dtype=query_layer.dtype
674
- ) # fp16 compatibility
675
-
676
- if self.position_embedding_type == "relative_key":
677
- relative_position_scores = torch.einsum(
678
- "bhld,lrd->bhlr", query_layer, positional_embedding
679
- )
680
- attention_scores = attention_scores + relative_position_scores
681
- elif self.position_embedding_type == "relative_key_query":
682
- relative_position_scores_query = torch.einsum(
683
- "bhld,lrd->bhlr", query_layer, positional_embedding
684
- )
685
- relative_position_scores_key = torch.einsum(
686
- "bhrd,lrd->bhlr", key_layer, positional_embedding
687
- )
688
- attention_scores = (
689
- attention_scores
690
- + relative_position_scores_query
691
- + relative_position_scores_key
692
- )
693
-
694
- if attention_mask is not None:
695
- # Apply the attention mask is (precomputed for all layers in NTModel forward() function)
696
- #attention_scores = attention_scores + attention_mask
697
- attention_scores = torch.where(attention_mask, attention_scores, -1e30)
698
- #attention_logits = jnp.where(attention_mask, attention_logits, -1e30)
699
-
700
- # Normalize the attention scores to probabilities.
701
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
702
-
703
- # This is actually dropping out entire tokens to attend to, which might
704
- # seem a bit unusual, but is taken from the original Transformer paper.
705
- #attention_probs = self.dropout(attention_probs)
706
-
707
- # Mask heads if we want to
708
- if head_mask is not None:
709
- attention_probs = attention_probs * head_mask
710
-
711
- context_layer = torch.matmul(attention_probs, value_layer)
712
-
713
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
714
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
715
- context_layer = context_layer.view(new_context_layer_shape)
716
-
717
- outputs = (
718
- (context_layer, attention_probs) if output_attentions else (context_layer,)
719
- )
720
-
721
- if self.is_decoder:
722
- outputs = outputs + (past_key_value,)
723
- return {
724
- "embeddings": self.dense(context_layer) + hidden_states,
725
- "query_heads": self.transpose_for_scores(mixed_query_layer),
726
- "value_heads": self.transpose_for_scores(self.value(encoder_hidden_states)),
727
- "key_heads": self.transpose_for_scores(self.key(encoder_hidden_states)),
728
- "attention_probs": attention_probs,
729
- "attention_scores": attention_scores,
730
- "context_layer": context_layer,
731
- }
732
-
733
- class EsmIntermediate(nn.Module):
734
- def __init__(self, config):
735
- super().__init__()
736
- self.dense = nn.Linear(
737
- config.hidden_size,
738
- int(config.intermediate_size * 2),
739
- bias=config.add_bias_fnn,
740
- )
741
- self.activation_fn = SiLU()
742
-
743
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
744
- hidden_states = self.dense(hidden_states)
745
-
746
- # GLU
747
- x1, x2 = hidden_states.split(int(hidden_states.size(-1) / 2), -1)
748
- hidden_states = self.activation_fn(x1) * x2
749
-
750
- return hidden_states
751
-
752
-
753
- class EsmOutput(nn.Module):
754
- def __init__(self, config):
755
- super().__init__()
756
- self.dense = nn.Linear(
757
- config.intermediate_size, config.hidden_size, bias=config.add_bias_fnn
758
- )
759
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
760
-
761
- def forward(self, hidden_states, input_tensor):
762
- hidden_states = self.dense(hidden_states)
763
- hidden_states = self.dropout(hidden_states)
764
- hidden_states += input_tensor
765
- return hidden_states
766
-
767
-
768
- class EsmLayer(nn.Module):
769
- def __init__(self, config):
770
- super().__init__()
771
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
772
- self.seq_len_dim = 1
773
- self.attention = EsmAttention(config)
774
- self.is_decoder = config.is_decoder
775
- self.add_cross_attention = config.add_cross_attention
776
- if self.add_cross_attention:
777
- if not self.is_decoder:
778
- raise RuntimeError(
779
- f"{self} should be used as a decoder model if cross attention is added"
780
- )
781
- self.crossattention = EsmAttention(config)
782
- self.intermediate = EsmIntermediate(config)
783
- self.output = EsmOutput(config)
784
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
785
-
786
- def forward(
787
- self,
788
- hidden_states,
789
- attention_mask=None,
790
- head_mask=None,
791
- encoder_hidden_states=None,
792
- encoder_attention_mask=None,
793
- past_key_value=None,
794
- output_attentions=False,
795
- ):
796
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
797
- self_attn_past_key_value = (
798
- past_key_value[:2] if past_key_value is not None else None
799
- )
800
- self_attention_outputs = self.attention(
801
- hidden_states,
802
- attention_mask,
803
- head_mask,
804
- output_attentions=output_attentions,
805
- past_key_value=self_attn_past_key_value,
806
- )
807
- attention_output = self_attention_outputs[0]
808
-
809
- # if decoder, the last output is tuple of self-attn cache
810
- if self.is_decoder:
811
- outputs = self_attention_outputs[1:-1]
812
- present_key_value = self_attention_outputs[-1]
813
- else:
814
- outputs = self_attention_outputs[
815
- 1:
816
- ] # add self attentions if we output attention weights
817
-
818
- cross_attn_present_key_value = None
819
- if self.is_decoder and encoder_hidden_states is not None:
820
- if not hasattr(self, "crossattention"):
821
- raise AttributeError(
822
- f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
823
- " with cross-attention layers by setting `config.add_cross_attention=True`"
824
- )
825
-
826
- # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
827
- cross_attn_past_key_value = (
828
- past_key_value[-2:] if past_key_value is not None else None
829
- )
830
- cross_attention_outputs = self.crossattention(
831
- attention_output,
832
- attention_mask,
833
- head_mask,
834
- encoder_hidden_states,
835
- encoder_attention_mask,
836
- cross_attn_past_key_value,
837
- output_attentions,
838
- )
839
- attention_output = cross_attention_outputs[0]
840
- outputs = (
841
- outputs + cross_attention_outputs[1:-1]
842
- ) # add cross attentions if we output attention weights
843
-
844
- # add cross-attn cache to positions 3,4 of present_key_value tuple
845
- cross_attn_present_key_value = cross_attention_outputs[-1]
846
- present_key_value = present_key_value + cross_attn_present_key_value
847
-
848
- layer_output = self.feed_forward_chunk(attention_output)
849
-
850
- outputs = (layer_output,) + outputs
851
-
852
- # if decoder, return the attn key/values as the last output
853
- if self.is_decoder:
854
- outputs = outputs + (present_key_value,)
855
- return outputs
856
-
857
- def feed_forward_chunk(self, attention_output):
858
- attention_output_ln = self.LayerNorm(attention_output)
859
- intermediate_output = self.intermediate(attention_output_ln)
860
- layer_output = self.output(intermediate_output, attention_output)
861
- return layer_output
862
-
863
-
864
- class EsmEncoder(nn.Module):
865
- def __init__(self, config):
866
- super().__init__()
867
- self.config = config
868
- self.layer = nn.ModuleList(
869
- [EsmLayer(config) for _ in range(config.num_hidden_layers)]
870
- )
871
- self.emb_layer_norm_after = nn.LayerNorm(
872
- config.hidden_size, eps=config.layer_norm_eps
873
- )
874
- self.gradient_checkpointing = False
875
-
876
- def forward(
877
- self,
878
- hidden_states,
879
- attention_mask=None,
880
- head_mask=None,
881
- encoder_hidden_states=None,
882
- encoder_attention_mask=None,
883
- past_key_values=None,
884
- use_cache=None,
885
- output_attentions=False,
886
- output_hidden_states=False,
887
- return_dict=True,
888
- ):
889
- if self.gradient_checkpointing and self.training:
890
- if use_cache:
891
- logger.warning_once(
892
- "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
893
- "`use_cache=False`..."
894
- )
895
- use_cache = False
896
- all_hidden_states = () if output_hidden_states else None
897
- all_self_attentions = () if output_attentions else None
898
- all_cross_attentions = (
899
- () if output_attentions and self.config.add_cross_attention else None
900
- )
901
-
902
- next_decoder_cache = () if use_cache else None
903
- for i, layer_module in enumerate(self.layer):
904
- if output_hidden_states:
905
- all_hidden_states = all_hidden_states + (hidden_states,)
906
-
907
- layer_head_mask = head_mask[i] if head_mask is not None else None
908
- past_key_value = past_key_values[i] if past_key_values is not None else None
909
-
910
- if self.gradient_checkpointing and self.training:
911
-
912
- def create_custom_forward(module):
913
- def custom_forward(*inputs):
914
- return module(*inputs, past_key_value, output_attentions)
915
-
916
- return custom_forward
917
-
918
- layer_outputs = torch.utils.checkpoint.checkpoint(
919
- create_custom_forward(layer_module),
920
- hidden_states,
921
- attention_mask,
922
- layer_head_mask,
923
- encoder_hidden_states,
924
- encoder_attention_mask,
925
- )
926
- else:
927
- layer_outputs = layer_module(
928
- hidden_states,
929
- attention_mask,
930
- layer_head_mask,
931
- encoder_hidden_states,
932
- encoder_attention_mask,
933
- past_key_value,
934
- output_attentions,
935
- )
936
-
937
- hidden_states = layer_outputs[0]
938
- if use_cache:
939
- next_decoder_cache += (layer_outputs[-1],)
940
- if output_attentions:
941
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
942
- if self.config.add_cross_attention:
943
- all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
944
-
945
- if self.emb_layer_norm_after:
946
- hidden_states = self.emb_layer_norm_after(hidden_states)
947
-
948
- if output_hidden_states:
949
- all_hidden_states = all_hidden_states + (hidden_states,)
950
-
951
- if not return_dict:
952
- return tuple(
953
- v
954
- for v in [
955
- hidden_states,
956
- next_decoder_cache,
957
- all_hidden_states,
958
- all_self_attentions,
959
- all_cross_attentions,
960
- ]
961
- if v is not None
962
- )
963
- return BaseModelOutputWithPastAndCrossAttentions(
964
- last_hidden_state=hidden_states,
965
- past_key_values=next_decoder_cache,
966
- hidden_states=all_hidden_states,
967
- attentions=all_self_attentions,
968
- cross_attentions=all_cross_attentions,
969
- )
970
-
971
-
972
- # Copied from transformers.models.bert.modeling_bert.BertPooler
973
- class EsmPooler(nn.Module):
974
- def __init__(self, config):
975
- super().__init__()
976
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
977
- self.activation = nn.Tanh()
978
-
979
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
980
- # We "pool" the model by simply taking the hidden state corresponding
981
- # to the first token.
982
- first_token_tensor = hidden_states[:, 0]
983
- pooled_output = self.dense(first_token_tensor)
984
- pooled_output = self.activation(pooled_output)
985
- return pooled_output
986
-
987
-
988
- class EsmPreTrainedModel(PreTrainedModel):
989
- """
990
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
991
- models.
992
- """
993
-
994
- config_class = NTConfig
995
- base_model_prefix = "esm"
996
- _no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock"]
997
-
998
- # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
999
- def _init_weights(self, module):
1000
- """Initialize the weights"""
1001
- if isinstance(module, nn.Linear):
1002
- # Slightly different from the TF version which uses truncated_normal for initialization
1003
- # cf https://github.com/pytorch/pytorch/pull/5617
1004
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
1005
- if module.bias is not None:
1006
- module.bias.data.zero_()
1007
- elif isinstance(module, nn.Embedding):
1008
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
1009
- if module.padding_idx is not None:
1010
- module.weight.data[module.padding_idx].zero_()
1011
- elif isinstance(module, nn.LayerNorm):
1012
- module.bias.data.zero_()
1013
- module.weight.data.fill_(1.0)
1014
-
1015
-
1016
- ESM_START_DOCSTRING = r"""
1017
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1018
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1019
- etc.)
1020
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1021
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1022
- and behavior.
1023
- Parameters:
1024
- config ([`NTConfig`]): Model configuration class with all the parameters of the
1025
- model. Initializing with a config file does not load the weights associated with the model, only the
1026
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1027
- """
1028
-
1029
- ESM_INPUTS_DOCSTRING = r"""
1030
- Args:
1031
- input_ids (`torch.LongTensor` of shape `({0})`):
1032
- Indices of input sequence tokens in the vocabulary.
1033
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1034
- [`PreTrainedTokenizer.__call__`] for details.
1035
- [What are input IDs?](../glossary#input-ids)
1036
- attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
1037
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1038
- - 1 for tokens that are **not masked**,
1039
- - 0 for tokens that are **masked**.
1040
- [What are attention masks?](../glossary#attention-mask)
1041
- position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
1042
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1043
- config.max_position_embeddings - 1]`.
1044
- [What are position IDs?](../glossary#position-ids)
1045
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
1046
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
1047
- - 1 indicates the head is **not masked**,
1048
- - 0 indicates the head is **masked**.
1049
- inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
1050
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1051
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1052
- model's internal embedding lookup matrix.
1053
- output_attentions (`bool`, *optional*):
1054
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1055
- tensors for more detail.
1056
- output_hidden_states (`bool`, *optional*):
1057
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1058
- more detail.
1059
- return_dict (`bool`, *optional*):
1060
- Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
1061
- """
1062
-
1063
-
1064
- @add_start_docstrings(
1065
- "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
1066
- ESM_START_DOCSTRING,
1067
- )
1068
- class NTModel(EsmPreTrainedModel):
1069
- """
1070
- The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
1071
- cross-attention is added between the self-attention layers, following the architecture described in [Attention is
1072
- all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
1073
- Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
1074
- To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
1075
- to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
1076
- `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
1077
- """
1078
-
1079
- supports_gradient_checkpointing = False
1080
-
1081
- def __init__(self, config, add_pooling_layer=True):
1082
- super().__init__(config)
1083
- self.config = config
1084
-
1085
- self.embeddings = EsmEmbeddings(config)
1086
- self.encoder = EsmEncoder(config)
1087
-
1088
- self.pooler = EsmPooler(config) if add_pooling_layer else None
1089
-
1090
- self.contact_head = EsmContactPredictionHead(
1091
- in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
1092
- )
1093
-
1094
- # Initialize weights and apply final processing
1095
- self.post_init()
1096
-
1097
- def _set_gradient_checkpointing(self, module, value=False):
1098
- if isinstance(module, EsmEncoder):
1099
- module.gradient_checkpointing = value
1100
-
1101
- def get_input_embeddings(self):
1102
- return self.embeddings.word_embeddings
1103
-
1104
- def set_input_embeddings(self, value):
1105
- self.embeddings.word_embeddings = value
1106
-
1107
- def _prune_heads(self, heads_to_prune):
1108
- """
1109
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1110
- class PreTrainedModel
1111
- """
1112
- for layer, heads in heads_to_prune.items():
1113
- self.encoder.layer[layer].attention.prune_heads(heads)
1114
-
1115
- @add_start_docstrings_to_model_forward(
1116
- ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")
1117
- )
1118
- @add_code_sample_docstrings(
1119
- checkpoint=_CHECKPOINT_FOR_DOC,
1120
- output_type=BaseModelOutputWithPoolingAndCrossAttentions,
1121
- config_class=_CONFIG_FOR_DOC,
1122
- )
1123
- def forward(
1124
- self,
1125
- input_ids: Optional[torch.Tensor] = None,
1126
- attention_mask: Optional[torch.Tensor] = None,
1127
- position_ids: Optional[torch.Tensor] = None,
1128
- head_mask: Optional[torch.Tensor] = None,
1129
- inputs_embeds: Optional[torch.Tensor] = None,
1130
- encoder_hidden_states: Optional[torch.Tensor] = None,
1131
- encoder_attention_mask: Optional[torch.Tensor] = None,
1132
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1133
- use_cache: Optional[bool] = None,
1134
- output_attentions: Optional[bool] = None,
1135
- output_hidden_states: Optional[bool] = None,
1136
- return_dict: Optional[bool] = None,
1137
- ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
1138
- r"""
1139
- encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1140
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1141
- the model is configured as a decoder.
1142
- encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1143
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1144
- the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1145
- - 1 for tokens that are **not masked**,
1146
- - 0 for tokens that are **masked**.
1147
- past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1148
- Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1149
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1150
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1151
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1152
- use_cache (`bool`, *optional*):
1153
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1154
- `past_key_values`).
1155
- """
1156
- output_attentions = (
1157
- output_attentions
1158
- if output_attentions is not None
1159
- else self.config.output_attentions
1160
- )
1161
- output_hidden_states = (
1162
- output_hidden_states
1163
- if output_hidden_states is not None
1164
- else self.config.output_hidden_states
1165
- )
1166
- return_dict = (
1167
- return_dict if return_dict is not None else self.config.use_return_dict
1168
- )
1169
-
1170
- if self.config.is_decoder:
1171
- use_cache = use_cache if use_cache is not None else self.config.use_cache
1172
- else:
1173
- use_cache = False
1174
-
1175
- if input_ids is not None and inputs_embeds is not None:
1176
- raise ValueError(
1177
- "You cannot specify both input_ids and inputs_embeds at the same time"
1178
- )
1179
- elif input_ids is not None:
1180
- input_shape = input_ids.size()
1181
- elif inputs_embeds is not None:
1182
- input_shape = inputs_embeds.size()[:-1]
1183
- else:
1184
- raise ValueError("You have to specify either input_ids or inputs_embeds")
1185
-
1186
- batch_size, seq_length = input_shape
1187
- device = input_ids.device if input_ids is not None else inputs_embeds.device
1188
-
1189
- # past_key_values_length
1190
- past_key_values_length = (
1191
- past_key_values[0][0].shape[2] if past_key_values is not None else 0
1192
- )
1193
-
1194
- if attention_mask is None:
1195
- attention_mask = torch.ones(
1196
- ((batch_size, seq_length + past_key_values_length)), device=device
1197
- )
1198
-
1199
- # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1200
- # ourselves in which case we just need to make it broadcastable to all heads.
1201
- extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
1202
- attention_mask, input_shape
1203
- )
1204
-
1205
- # If a 2D or 3D attention mask is provided for the cross-attention
1206
- # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1207
- if self.config.is_decoder and encoder_hidden_states is not None:
1208
- (
1209
- encoder_batch_size,
1210
- encoder_sequence_length,
1211
- _,
1212
- ) = encoder_hidden_states.size()
1213
- encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1214
- if encoder_attention_mask is None:
1215
- encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1216
- encoder_extended_attention_mask = self.invert_attention_mask(
1217
- encoder_attention_mask
1218
- )
1219
- else:
1220
- encoder_extended_attention_mask = None
1221
-
1222
- # Prepare head mask if needed
1223
- # 1.0 in head_mask indicate we keep the head
1224
- # attention_probs has shape bsz x n_heads x N x N
1225
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1226
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1227
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1228
-
1229
- embedding_output = self.embeddings(
1230
- input_ids=input_ids,
1231
- position_ids=position_ids,
1232
- attention_mask=attention_mask,
1233
- inputs_embeds=inputs_embeds,
1234
- past_key_values_length=past_key_values_length,
1235
- )
1236
- encoder_outputs = self.encoder(
1237
- embedding_output,
1238
- attention_mask=extended_attention_mask,
1239
- head_mask=head_mask,
1240
- encoder_hidden_states=encoder_hidden_states,
1241
- encoder_attention_mask=encoder_extended_attention_mask,
1242
- past_key_values=past_key_values,
1243
- use_cache=use_cache,
1244
- output_attentions=output_attentions,
1245
- output_hidden_states=output_hidden_states,
1246
- return_dict=return_dict,
1247
- )
1248
- sequence_output = encoder_outputs[0]
1249
- pooled_output = (
1250
- self.pooler(sequence_output) if self.pooler is not None else None
1251
- )
1252
-
1253
- if not return_dict:
1254
- return (sequence_output, pooled_output) + encoder_outputs[1:]
1255
-
1256
- return BaseModelOutputWithPoolingAndCrossAttentions(
1257
- last_hidden_state=sequence_output,
1258
- pooler_output=pooled_output,
1259
- past_key_values=encoder_outputs.past_key_values,
1260
- hidden_states=encoder_outputs.hidden_states,
1261
- attentions=encoder_outputs.attentions,
1262
- cross_attentions=encoder_outputs.cross_attentions,
1263
- )
1264
-
1265
- def predict_contacts(self, tokens, attention_mask):
1266
- attns = self(
1267
- tokens,
1268
- attention_mask=attention_mask,
1269
- return_dict=True,
1270
- output_attentions=True,
1271
- ).attentions
1272
- attns = torch.stack(attns, dim=1) # Matches the original model layout
1273
- # In the original model, attentions for padding tokens are completely zeroed out.
1274
- # This makes no difference most of the time because the other tokens won't attend to them,
1275
- # but it does for the contact prediction task, which takes attentions as input,
1276
- # so we have to mimic that here.
1277
- attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
1278
- attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
1279
- return self.contact_head(tokens, attns)
1280
-
1281
-
1282
- @add_start_docstrings(
1283
- """ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING
1284
- )
1285
- class NTForMaskedLM(EsmPreTrainedModel):
1286
- _tied_weights_keys = ["lm_head.decoder.weight"]
1287
-
1288
- def __init__(self, config):
1289
- super().__init__(config)
1290
-
1291
- if config.is_decoder:
1292
- logger.warning(
1293
- "If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
1294
- "bi-directional self-attention."
1295
- )
1296
-
1297
- self.esm = NTModel(config, add_pooling_layer=False)
1298
- self.lm_head = EsmLMHead(config)
1299
-
1300
- self.init_weights()
1301
-
1302
- def get_output_embeddings(self):
1303
- return self.lm_head.decoder
1304
-
1305
- def set_output_embeddings(self, new_embeddings):
1306
- self.lm_head.decoder = new_embeddings
1307
-
1308
- @add_start_docstrings_to_model_forward(
1309
- ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1310
- )
1311
- @add_code_sample_docstrings(
1312
- checkpoint=_CHECKPOINT_FOR_DOC,
1313
- output_type=MaskedLMOutput,
1314
- config_class=_CONFIG_FOR_DOC,
1315
- mask="<mask>",
1316
- )
1317
- def forward(
1318
- self,
1319
- input_ids: Optional[torch.LongTensor] = None,
1320
- attention_mask: Optional[torch.Tensor] = None,
1321
- position_ids: Optional[torch.LongTensor] = None,
1322
- head_mask: Optional[torch.Tensor] = None,
1323
- inputs_embeds: Optional[torch.FloatTensor] = None,
1324
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
1325
- encoder_attention_mask: Optional[torch.Tensor] = None,
1326
- labels: Optional[torch.LongTensor] = None,
1327
- output_attentions: Optional[bool] = None,
1328
- output_hidden_states: Optional[bool] = None,
1329
- return_dict: Optional[bool] = None,
1330
- ) -> Union[Tuple, MaskedLMOutput]:
1331
- r"""
1332
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1333
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1334
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1335
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1336
- kwargs (`Dict[str, any]`, optional, defaults to *{}*):
1337
- Used to hide legacy arguments that have been deprecated.
1338
- """
1339
- return_dict = (
1340
- return_dict if return_dict is not None else self.config.use_return_dict
1341
- )
1342
-
1343
- outputs = self.esm(
1344
- input_ids,
1345
- attention_mask=attention_mask,
1346
- position_ids=position_ids,
1347
- head_mask=head_mask,
1348
- inputs_embeds=inputs_embeds,
1349
- encoder_hidden_states=encoder_hidden_states,
1350
- encoder_attention_mask=encoder_attention_mask,
1351
- output_attentions=output_attentions,
1352
- output_hidden_states=output_hidden_states,
1353
- return_dict=return_dict,
1354
- )
1355
- sequence_output = outputs[0]
1356
- prediction_scores = self.lm_head(sequence_output)
1357
-
1358
- masked_lm_loss = None
1359
- if labels is not None:
1360
- loss_fct = CrossEntropyLoss()
1361
-
1362
- labels = labels.to(prediction_scores.device)
1363
- masked_lm_loss = loss_fct(
1364
- prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
1365
- )
1366
-
1367
- if not return_dict:
1368
- output = (prediction_scores,) + outputs[2:]
1369
- return (
1370
- ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1371
- )
1372
-
1373
- return MaskedLMOutput(
1374
- loss=masked_lm_loss,
1375
- logits=prediction_scores,
1376
- hidden_states=outputs.hidden_states,
1377
- attentions=outputs.attentions,
1378
- )
1379
-
1380
- def predict_contacts(self, tokens, attention_mask):
1381
- return self.esm.predict_contacts(tokens, attention_mask=attention_mask)
1382
-
1383
-
1384
- class EsmLMHead(nn.Module):
1385
- """ESM Head for masked language modeling."""
1386
-
1387
- def __init__(self, config):
1388
- super().__init__()
1389
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
1390
- self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1391
-
1392
- self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1393
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
1394
-
1395
- def forward(self, features, **kwargs):
1396
- x = self.dense(features)
1397
- x = gelu(x)
1398
- x = self.layer_norm(x)
1399
-
1400
- # project back to size of vocabulary with bias
1401
- x = self.decoder(x) + self.bias
1402
- return x
1403
-
1404
-
1405
- @add_start_docstrings(
1406
- """
1407
- ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
1408
- output) e.g. for GLUE tasks.
1409
- """,
1410
- ESM_START_DOCSTRING,
1411
- )
1412
- class EsmForSequenceClassification(EsmPreTrainedModel):
1413
- def __init__(self, config):
1414
- super().__init__(config)
1415
- self.num_labels = config.num_labels
1416
- self.config = config
1417
-
1418
- self.esm = NTModel(config, add_pooling_layer=False)
1419
- self.classifier = EsmClassificationHead(config)
1420
-
1421
- self.init_weights()
1422
-
1423
- @add_start_docstrings_to_model_forward(
1424
- ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1425
- )
1426
- @add_code_sample_docstrings(
1427
- checkpoint=_CHECKPOINT_FOR_DOC,
1428
- output_type=SequenceClassifierOutput,
1429
- config_class=_CONFIG_FOR_DOC,
1430
- )
1431
- def forward(
1432
- self,
1433
- input_ids: Optional[torch.LongTensor] = None,
1434
- attention_mask: Optional[torch.Tensor] = None,
1435
- position_ids: Optional[torch.LongTensor] = None,
1436
- head_mask: Optional[torch.Tensor] = None,
1437
- inputs_embeds: Optional[torch.FloatTensor] = None,
1438
- labels: Optional[torch.LongTensor] = None,
1439
- output_attentions: Optional[bool] = None,
1440
- output_hidden_states: Optional[bool] = None,
1441
- return_dict: Optional[bool] = None,
1442
- ) -> Union[Tuple, SequenceClassifierOutput]:
1443
- r"""
1444
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1445
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1446
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1447
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1448
- """
1449
- return_dict = (
1450
- return_dict if return_dict is not None else self.config.use_return_dict
1451
- )
1452
-
1453
- outputs = self.esm(
1454
- input_ids,
1455
- attention_mask=attention_mask,
1456
- position_ids=position_ids,
1457
- head_mask=head_mask,
1458
- inputs_embeds=inputs_embeds,
1459
- output_attentions=output_attentions,
1460
- output_hidden_states=output_hidden_states,
1461
- return_dict=return_dict,
1462
- )
1463
- sequence_output = outputs[0]
1464
- logits = self.classifier(sequence_output)
1465
-
1466
- loss = None
1467
- if labels is not None:
1468
- labels = labels.to(logits.device)
1469
-
1470
- if self.config.problem_type is None:
1471
- if self.num_labels == 1:
1472
- self.config.problem_type = "regression"
1473
- elif self.num_labels > 1 and (
1474
- labels.dtype == torch.long or labels.dtype == torch.int
1475
- ):
1476
- self.config.problem_type = "single_label_classification"
1477
- else:
1478
- self.config.problem_type = "multi_label_classification"
1479
-
1480
- if self.config.problem_type == "regression":
1481
- loss_fct = MSELoss()
1482
- if self.num_labels == 1:
1483
- loss = loss_fct(logits.squeeze(), labels.squeeze())
1484
- else:
1485
- loss = loss_fct(logits, labels)
1486
- elif self.config.problem_type == "single_label_classification":
1487
- loss_fct = CrossEntropyLoss()
1488
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1489
- elif self.config.problem_type == "multi_label_classification":
1490
- loss_fct = BCEWithLogitsLoss()
1491
- loss = loss_fct(logits, labels)
1492
-
1493
- if not return_dict:
1494
- output = (logits,) + outputs[2:]
1495
- return ((loss,) + output) if loss is not None else output
1496
-
1497
- return SequenceClassifierOutput(
1498
- loss=loss,
1499
- logits=logits,
1500
- hidden_states=outputs.hidden_states,
1501
- attentions=outputs.attentions,
1502
- )
1503
-
1504
-
1505
- @add_start_docstrings(
1506
- """
1507
- ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1508
- Named-Entity-Recognition (NER) tasks.
1509
- """,
1510
- ESM_START_DOCSTRING,
1511
- )
1512
- class EsmForTokenClassification(EsmPreTrainedModel):
1513
- def __init__(self, config):
1514
- super().__init__(config)
1515
- self.num_labels = config.num_labels
1516
-
1517
- self.esm = NTModel(config, add_pooling_layer=False)
1518
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
1519
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1520
-
1521
- self.init_weights()
1522
-
1523
- @add_start_docstrings_to_model_forward(
1524
- ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1525
- )
1526
- @add_code_sample_docstrings(
1527
- checkpoint=_CHECKPOINT_FOR_DOC,
1528
- output_type=TokenClassifierOutput,
1529
- config_class=_CONFIG_FOR_DOC,
1530
- )
1531
- def forward(
1532
- self,
1533
- input_ids: Optional[torch.LongTensor] = None,
1534
- attention_mask: Optional[torch.Tensor] = None,
1535
- position_ids: Optional[torch.LongTensor] = None,
1536
- head_mask: Optional[torch.Tensor] = None,
1537
- inputs_embeds: Optional[torch.FloatTensor] = None,
1538
- labels: Optional[torch.LongTensor] = None,
1539
- output_attentions: Optional[bool] = None,
1540
- output_hidden_states: Optional[bool] = None,
1541
- return_dict: Optional[bool] = None,
1542
- ) -> Union[Tuple, TokenClassifierOutput]:
1543
- r"""
1544
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1545
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1546
- """
1547
- return_dict = (
1548
- return_dict if return_dict is not None else self.config.use_return_dict
1549
- )
1550
-
1551
- outputs = self.esm(
1552
- input_ids,
1553
- attention_mask=attention_mask,
1554
- position_ids=position_ids,
1555
- head_mask=head_mask,
1556
- inputs_embeds=inputs_embeds,
1557
- output_attentions=output_attentions,
1558
- output_hidden_states=output_hidden_states,
1559
- return_dict=return_dict,
1560
- )
1561
-
1562
- sequence_output = outputs[0]
1563
-
1564
- sequence_output = self.dropout(sequence_output)
1565
- logits = self.classifier(sequence_output)
1566
-
1567
- loss = None
1568
- if labels is not None:
1569
- loss_fct = CrossEntropyLoss()
1570
-
1571
- labels = labels.to(logits.device)
1572
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1573
-
1574
- if not return_dict:
1575
- output = (logits,) + outputs[2:]
1576
- return ((loss,) + output) if loss is not None else output
1577
-
1578
- return TokenClassifierOutput(
1579
- loss=loss,
1580
- logits=logits,
1581
- hidden_states=outputs.hidden_states,
1582
- attentions=outputs.attentions,
1583
- )
1584
-
1585
-
1586
- class EsmClassificationHead(nn.Module):
1587
- """Head for sentence-level classification tasks."""
1588
-
1589
- def __init__(self, config):
1590
- super().__init__()
1591
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
1592
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
1593
- self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
1594
-
1595
- def forward(self, features, **kwargs):
1596
- x = features[:, 0, :] # take <s> token (equiv. to [CLS])
1597
- x = self.dropout(x)
1598
- x = self.dense(x)
1599
- x = torch.tanh(x)
1600
- x = self.dropout(x)
1601
- x = self.out_proj(x)
1602
- return x
1603
-
1604
-
1605
- def create_position_ids_from_input_ids(
1606
- input_ids, padding_idx, past_key_values_length=0
1607
- ):
1608
- """
1609
- Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
1610
- are ignored. This is modified from fairseq's `utils.make_positions`.
1611
- Args:
1612
- x: torch.Tensor x:
1613
- Returns: torch.Tensor
1614
- """
1615
- # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
1616
- mask = input_ids.ne(padding_idx).int()
1617
- incremental_indices = (
1618
- torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
1619
- ) * mask
1620
- return incremental_indices.long() + padding_idx