--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotions-text-classification results: [] --- # distilbert-base-uncased-finetuned-emotions-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on [emotion](https://huggingface.co/datasets/dair-ai/emotion) dataset. It achieves the following results on the evaluation set: - Loss: 0.2130 - Accuracy: 0.928 - F1: 0.9278 ## Model description More information needed ## Intended uses & limitations ```python import pandas as pd from transformers import pipeline import pandas as pd import matplotlib.pyplot as plt model_id = 'ithattieu/distilbert-base-uncased-finetuned-emotions-text-classification' classifier = pipeline('text-classification', model=model_id) labels = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise'] text = 'I am not a really smart lady, which makes it challenging to grasp certain concepts, but you made it super easy to understand NLP and relevant applications. So, thank you!' preds_df = pd.DataFrame(preds[0]) preds = classifier(text, return_all_scores=True) preds_df = pd.DataFrame(preds[0]) plt.bar(labels, 100 * preds_df["score"], color='C0') plt.title(f'"{text}"') plt.ylabel("Class probability (%)") plt.show() ``` ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8161 | 1.0 | 250 | 0.3051 | 0.912 | 0.9114 | | 0.2464 | 2.0 | 500 | 0.2130 | 0.928 | 0.9278 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.5.0.dev20240815 - Datasets 2.19.1 - Tokenizers 0.19.1