File size: 8,242 Bytes
96e64e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#
# Code is adapted from https://github.com/lucidrains/e2-tts-pytorch
# 

"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""


from __future__ import annotations
from typing import Dict, Any, Optional
from functools import partial

import torch
from torch import nn
from torch.nn import Module, ModuleList, Sequential, Linear
import torch.nn.functional as F

from torchdiffeq import odeint
from einops.layers.torch import Rearrange
from einops import rearrange, repeat, pack, unpack
from x_transformers import Attention, FeedForward, RMSNorm, AdaptiveRMSNorm
from x_transformers.x_transformers import RotaryEmbedding
from gateloop_transformer import SimpleGateLoopLayer

from tensor_typing import Float

class Identity(Module):
    def forward(self, x, **kwargs):
        return x

class AdaLNZero(Module):
    def __init__(self, dim: int, dim_condition: Optional[int] = None, init_bias_value: float = -2.):
        super().__init__()
        dim_condition = dim_condition or dim
        self.to_gamma = nn.Linear(dim_condition, dim)
        nn.init.zeros_(self.to_gamma.weight)
        nn.init.constant_(self.to_gamma.bias, init_bias_value)

    def forward(self, x: torch.Tensor, *, condition: torch.Tensor) -> torch.Tensor:
        if condition.ndim == 2:
            condition = rearrange(condition, 'b d -> b 1 d')
        gamma = self.to_gamma(condition).sigmoid()
        return x * gamma

def exists(v: Any) -> bool:
    return v is not None

def default(v: Any, d: Any) -> Any:
    return v if exists(v) else d

def divisible_by(num: int, den: int) -> bool:
    return (num % den) == 0

class Transformer(Module):
    def __init__(
        self,
        *,
        dim: int,
        depth: int = 8,
        cond_on_time: bool = True,
        skip_connect_type: str = 'concat',
        abs_pos_emb: bool = True,
        max_seq_len: int = 8192,
        heads: int = 8,
        dim_head: int = 64,
        num_gateloop_layers: int = 1,
        dropout: float = 0.1,
        num_registers: int = 32,
        attn_kwargs: Dict[str, Any] = dict(gate_value_heads=True, softclamp_logits=True),
        ff_kwargs: Dict[str, Any] = dict()
    ):
        super().__init__()
        assert divisible_by(depth, 2), 'depth needs to be even'

        self.max_seq_len = max_seq_len
        self.abs_pos_emb = nn.Embedding(max_seq_len, dim) if abs_pos_emb else None
        self.dim = dim
        self.skip_connect_type = skip_connect_type
        needs_skip_proj = skip_connect_type == 'concat'
        self.depth = depth
        self.layers = ModuleList([])

        self.num_registers = num_registers
        self.registers = nn.Parameter(torch.zeros(num_registers, dim))
        nn.init.normal_(self.registers, std=0.02)

        self.rotary_emb = RotaryEmbedding(dim_head)
        self.cond_on_time = cond_on_time
        rmsnorm_klass = AdaptiveRMSNorm if cond_on_time else RMSNorm
        postbranch_klass = partial(AdaLNZero, dim=dim) if cond_on_time else Identity

        self.time_cond_mlp = Sequential(
            Rearrange('... -> ... 1'),
            Linear(1, dim),
            nn.SiLU()
        ) if cond_on_time else nn.Identity()

        for ind in range(depth):
            is_later_half = ind >= (depth // 2)
            gateloop = SimpleGateLoopLayer(dim=dim)
            attn_norm = rmsnorm_klass(dim)
            attn = Attention(dim=dim, heads=heads, dim_head=dim_head, dropout=dropout, **attn_kwargs)
            attn_adaln_zero = postbranch_klass()
            ff_norm = rmsnorm_klass(dim)
            ff = FeedForward(dim=dim, glu=True, dropout=dropout, **ff_kwargs)
            ff_adaln_zero = postbranch_klass()
            skip_proj = Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None

            self.layers.append(ModuleList([
                gateloop, skip_proj, attn_norm, attn, attn_adaln_zero,
                ff_norm, ff, ff_adaln_zero
            ]))

        self.final_norm = RMSNorm(dim)

    def forward(
        self,
        x: Float['b n d'],
        times: Optional[Float['b'] | Float['']] = None,
    ) -> torch.Tensor:
        batch, seq_len, device = *x.shape[:2], x.device

        assert not (exists(times) ^ self.cond_on_time), '`times` must be passed in if `cond_on_time` is set to `True` and vice versa'

        norm_kwargs = {}

        if exists(self.abs_pos_emb):
            # assert seq_len <= self.max_seq_len, f'{seq_len} exceeds the set `max_seq_len` ({self.max_seq_len}) on Transformer'
            seq = torch.arange(seq_len, device=device)
            x = x + self.abs_pos_emb(seq)

        if exists(times):
            if times.ndim == 0:
                times = repeat(times, ' -> b', b=batch)
            times = self.time_cond_mlp(times)
            norm_kwargs['condition'] = times

        registers = repeat(self.registers, 'r d -> b r d', b=batch)
        x, registers_packed_shape = pack((registers, x), 'b * d')

        rotary_pos_emb = self.rotary_emb.forward_from_seq_len(x.shape[-2])

        skips = []

        for ind, (
            gateloop, maybe_skip_proj, attn_norm, attn, maybe_attn_adaln_zero,
            ff_norm, ff, maybe_ff_adaln_zero
        ) in enumerate(self.layers):
            layer = ind + 1
            is_first_half = layer <= (self.depth // 2)

            if is_first_half:
                skips.append(x)
            else:
                skip = skips.pop()
                if self.skip_connect_type == 'concat':
                    x = torch.cat((x, skip), dim=-1)
                    x = maybe_skip_proj(x)

            x = gateloop(x) + x

            attn_out = attn(attn_norm(x, **norm_kwargs), rotary_pos_emb=rotary_pos_emb)
            x = x + maybe_attn_adaln_zero(attn_out, **norm_kwargs)

            ff_out = ff(ff_norm(x, **norm_kwargs))
            x = x + maybe_ff_adaln_zero(ff_out, **norm_kwargs)

        assert len(skips) == 0

        _, x = unpack(x, registers_packed_shape, 'b * d')

        return self.final_norm(x)

class VoiceRestore(nn.Module):
    def __init__(
        self,
        sigma: float = 0.0,
        transformer: Optional[Dict[str, Any]] = None,
        odeint_kwargs: Optional[Dict[str, Any]] = None,
        num_channels: int = 100,
    ):
        super().__init__()
        self.sigma = sigma
        self.num_channels = num_channels

        self.transformer = Transformer(**transformer, cond_on_time=True)

        self.odeint_kwargs = odeint_kwargs or {'atol': 1e-5, 'rtol': 1e-5, 'method': 'midpoint'}

        self.proj_in = nn.Linear(num_channels, self.transformer.dim)
        self.cond_proj = nn.Linear(num_channels, self.transformer.dim)
        self.to_pred = nn.Linear(self.transformer.dim, num_channels)

    def transformer_with_pred_head(self, x: torch.Tensor, times: torch.Tensor, cond: Optional[torch.Tensor] = None) -> torch.Tensor:
        x = self.proj_in(x)
        if cond is not None:
            cond_proj = self.cond_proj(cond)
            x = x + cond_proj
        attended = self.transformer(x, times=times)
        return self.to_pred(attended)

    def cfg_transformer_with_pred_head(
        self,
        *args,
        cond=None,
        mask=None,
        cfg_strength: float = 0.5,
        **kwargs,
    ):
        pred = self.transformer_with_pred_head(*args, **kwargs, cond=cond)

        if cfg_strength < 1e-5:
            return pred * mask.unsqueeze(-1) if mask is not None else pred
    
        null_pred = self.transformer_with_pred_head(*args, **kwargs, cond=None)
        
        result = pred + (pred - null_pred) * cfg_strength
        return result * mask.unsqueeze(-1) if mask is not None else result


    @torch.no_grad()
    def sample(self, processed: torch.Tensor, steps: int = 32, cfg_strength: float = 0.5) -> torch.Tensor:
        self.eval()
        times = torch.linspace(0, 1, steps, device=processed.device)

        def ode_fn(t: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
            return self.cfg_transformer_with_pred_head(x, times=t, cond=processed, cfg_strength=cfg_strength)

        y0 = torch.randn_like(processed)
        trajectory = odeint(ode_fn, y0, times, **self.odeint_kwargs)
        restored = trajectory[-1]
        return restored