File size: 8,242 Bytes
96e64e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
#
# Code is adapted from https://github.com/lucidrains/e2-tts-pytorch
#
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
from typing import Dict, Any, Optional
from functools import partial
import torch
from torch import nn
from torch.nn import Module, ModuleList, Sequential, Linear
import torch.nn.functional as F
from torchdiffeq import odeint
from einops.layers.torch import Rearrange
from einops import rearrange, repeat, pack, unpack
from x_transformers import Attention, FeedForward, RMSNorm, AdaptiveRMSNorm
from x_transformers.x_transformers import RotaryEmbedding
from gateloop_transformer import SimpleGateLoopLayer
from tensor_typing import Float
class Identity(Module):
def forward(self, x, **kwargs):
return x
class AdaLNZero(Module):
def __init__(self, dim: int, dim_condition: Optional[int] = None, init_bias_value: float = -2.):
super().__init__()
dim_condition = dim_condition or dim
self.to_gamma = nn.Linear(dim_condition, dim)
nn.init.zeros_(self.to_gamma.weight)
nn.init.constant_(self.to_gamma.bias, init_bias_value)
def forward(self, x: torch.Tensor, *, condition: torch.Tensor) -> torch.Tensor:
if condition.ndim == 2:
condition = rearrange(condition, 'b d -> b 1 d')
gamma = self.to_gamma(condition).sigmoid()
return x * gamma
def exists(v: Any) -> bool:
return v is not None
def default(v: Any, d: Any) -> Any:
return v if exists(v) else d
def divisible_by(num: int, den: int) -> bool:
return (num % den) == 0
class Transformer(Module):
def __init__(
self,
*,
dim: int,
depth: int = 8,
cond_on_time: bool = True,
skip_connect_type: str = 'concat',
abs_pos_emb: bool = True,
max_seq_len: int = 8192,
heads: int = 8,
dim_head: int = 64,
num_gateloop_layers: int = 1,
dropout: float = 0.1,
num_registers: int = 32,
attn_kwargs: Dict[str, Any] = dict(gate_value_heads=True, softclamp_logits=True),
ff_kwargs: Dict[str, Any] = dict()
):
super().__init__()
assert divisible_by(depth, 2), 'depth needs to be even'
self.max_seq_len = max_seq_len
self.abs_pos_emb = nn.Embedding(max_seq_len, dim) if abs_pos_emb else None
self.dim = dim
self.skip_connect_type = skip_connect_type
needs_skip_proj = skip_connect_type == 'concat'
self.depth = depth
self.layers = ModuleList([])
self.num_registers = num_registers
self.registers = nn.Parameter(torch.zeros(num_registers, dim))
nn.init.normal_(self.registers, std=0.02)
self.rotary_emb = RotaryEmbedding(dim_head)
self.cond_on_time = cond_on_time
rmsnorm_klass = AdaptiveRMSNorm if cond_on_time else RMSNorm
postbranch_klass = partial(AdaLNZero, dim=dim) if cond_on_time else Identity
self.time_cond_mlp = Sequential(
Rearrange('... -> ... 1'),
Linear(1, dim),
nn.SiLU()
) if cond_on_time else nn.Identity()
for ind in range(depth):
is_later_half = ind >= (depth // 2)
gateloop = SimpleGateLoopLayer(dim=dim)
attn_norm = rmsnorm_klass(dim)
attn = Attention(dim=dim, heads=heads, dim_head=dim_head, dropout=dropout, **attn_kwargs)
attn_adaln_zero = postbranch_klass()
ff_norm = rmsnorm_klass(dim)
ff = FeedForward(dim=dim, glu=True, dropout=dropout, **ff_kwargs)
ff_adaln_zero = postbranch_klass()
skip_proj = Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None
self.layers.append(ModuleList([
gateloop, skip_proj, attn_norm, attn, attn_adaln_zero,
ff_norm, ff, ff_adaln_zero
]))
self.final_norm = RMSNorm(dim)
def forward(
self,
x: Float['b n d'],
times: Optional[Float['b'] | Float['']] = None,
) -> torch.Tensor:
batch, seq_len, device = *x.shape[:2], x.device
assert not (exists(times) ^ self.cond_on_time), '`times` must be passed in if `cond_on_time` is set to `True` and vice versa'
norm_kwargs = {}
if exists(self.abs_pos_emb):
# assert seq_len <= self.max_seq_len, f'{seq_len} exceeds the set `max_seq_len` ({self.max_seq_len}) on Transformer'
seq = torch.arange(seq_len, device=device)
x = x + self.abs_pos_emb(seq)
if exists(times):
if times.ndim == 0:
times = repeat(times, ' -> b', b=batch)
times = self.time_cond_mlp(times)
norm_kwargs['condition'] = times
registers = repeat(self.registers, 'r d -> b r d', b=batch)
x, registers_packed_shape = pack((registers, x), 'b * d')
rotary_pos_emb = self.rotary_emb.forward_from_seq_len(x.shape[-2])
skips = []
for ind, (
gateloop, maybe_skip_proj, attn_norm, attn, maybe_attn_adaln_zero,
ff_norm, ff, maybe_ff_adaln_zero
) in enumerate(self.layers):
layer = ind + 1
is_first_half = layer <= (self.depth // 2)
if is_first_half:
skips.append(x)
else:
skip = skips.pop()
if self.skip_connect_type == 'concat':
x = torch.cat((x, skip), dim=-1)
x = maybe_skip_proj(x)
x = gateloop(x) + x
attn_out = attn(attn_norm(x, **norm_kwargs), rotary_pos_emb=rotary_pos_emb)
x = x + maybe_attn_adaln_zero(attn_out, **norm_kwargs)
ff_out = ff(ff_norm(x, **norm_kwargs))
x = x + maybe_ff_adaln_zero(ff_out, **norm_kwargs)
assert len(skips) == 0
_, x = unpack(x, registers_packed_shape, 'b * d')
return self.final_norm(x)
class VoiceRestore(nn.Module):
def __init__(
self,
sigma: float = 0.0,
transformer: Optional[Dict[str, Any]] = None,
odeint_kwargs: Optional[Dict[str, Any]] = None,
num_channels: int = 100,
):
super().__init__()
self.sigma = sigma
self.num_channels = num_channels
self.transformer = Transformer(**transformer, cond_on_time=True)
self.odeint_kwargs = odeint_kwargs or {'atol': 1e-5, 'rtol': 1e-5, 'method': 'midpoint'}
self.proj_in = nn.Linear(num_channels, self.transformer.dim)
self.cond_proj = nn.Linear(num_channels, self.transformer.dim)
self.to_pred = nn.Linear(self.transformer.dim, num_channels)
def transformer_with_pred_head(self, x: torch.Tensor, times: torch.Tensor, cond: Optional[torch.Tensor] = None) -> torch.Tensor:
x = self.proj_in(x)
if cond is not None:
cond_proj = self.cond_proj(cond)
x = x + cond_proj
attended = self.transformer(x, times=times)
return self.to_pred(attended)
def cfg_transformer_with_pred_head(
self,
*args,
cond=None,
mask=None,
cfg_strength: float = 0.5,
**kwargs,
):
pred = self.transformer_with_pred_head(*args, **kwargs, cond=cond)
if cfg_strength < 1e-5:
return pred * mask.unsqueeze(-1) if mask is not None else pred
null_pred = self.transformer_with_pred_head(*args, **kwargs, cond=None)
result = pred + (pred - null_pred) * cfg_strength
return result * mask.unsqueeze(-1) if mask is not None else result
@torch.no_grad()
def sample(self, processed: torch.Tensor, steps: int = 32, cfg_strength: float = 0.5) -> torch.Tensor:
self.eval()
times = torch.linspace(0, 1, steps, device=processed.device)
def ode_fn(t: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
return self.cfg_transformer_with_pred_head(x, times=t, cond=processed, cfg_strength=cfg_strength)
y0 = torch.randn_like(processed)
trajectory = odeint(ode_fn, y0, times, **self.odeint_kwargs)
restored = trajectory[-1]
return restored |