File size: 14,386 Bytes
72fd365 aaf4bdc 72fd365 f427d24 72fd365 813b71e 72fd365 813b71e 72fd365 813b71e 72fd365 813b71e 72fd365 813b71e 72fd365 813b71e 72fd365 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
from functools import partial
import numpy as np
from tqdm import tqdm
import scipy.stats as stats
import math
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from timm.models.vision_transformer import Block
from .diffloss import DiffLoss
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def mask_by_order(mask_len, order, bsz, seq_len):
masking = torch.zeros(bsz, seq_len).to(device)
masking = torch.scatter(masking, dim=-1, index=order[:, :mask_len.long()], src=torch.ones(bsz, seq_len).to(device)).bool()
return masking
class MAR(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, img_size=256, vae_stride=16, patch_size=1,
encoder_embed_dim=1024, encoder_depth=16, encoder_num_heads=16,
decoder_embed_dim=1024, decoder_depth=16, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm,
vae_embed_dim=16,
mask_ratio_min=0.7,
label_drop_prob=0.1,
class_num=1000,
attn_dropout=0.1,
proj_dropout=0.1,
buffer_size=64,
diffloss_d=3,
diffloss_w=1024,
num_sampling_steps='100',
diffusion_batch_mul=4,
grad_checkpointing=False,
):
super().__init__()
# --------------------------------------------------------------------------
# VAE and patchify specifics
self.vae_embed_dim = vae_embed_dim
self.img_size = img_size
self.vae_stride = vae_stride
self.patch_size = patch_size
self.seq_h = self.seq_w = img_size // vae_stride // patch_size
self.seq_len = self.seq_h * self.seq_w
self.token_embed_dim = vae_embed_dim * patch_size**2
self.grad_checkpointing = grad_checkpointing
# --------------------------------------------------------------------------
# Class Embedding
self.num_classes = class_num
self.class_emb = nn.Embedding(1000, encoder_embed_dim)
self.label_drop_prob = label_drop_prob
# Fake class embedding for CFG's unconditional generation
self.fake_latent = nn.Parameter(torch.zeros(1, encoder_embed_dim))
# --------------------------------------------------------------------------
# MAR variant masking ratio, a left-half truncated Gaussian centered at 100% masking ratio with std 0.25
self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - 1.0) / 0.25, 0, loc=1.0, scale=0.25)
# --------------------------------------------------------------------------
# MAR encoder specifics
self.z_proj = nn.Linear(self.token_embed_dim, encoder_embed_dim, bias=True)
self.z_proj_ln = nn.LayerNorm(encoder_embed_dim, eps=1e-6)
self.buffer_size = buffer_size
self.encoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, encoder_embed_dim))
self.encoder_blocks = nn.ModuleList([
Block(encoder_embed_dim, encoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(encoder_depth)])
self.encoder_norm = norm_layer(encoder_embed_dim)
# --------------------------------------------------------------------------
# MAR decoder specifics
self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len + self.buffer_size, decoder_embed_dim))
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
proj_drop=proj_dropout, attn_drop=attn_dropout) for _ in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
self.diffusion_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len, decoder_embed_dim))
self.initialize_weights()
# --------------------------------------------------------------------------
# Diffusion Loss
self.diffloss = DiffLoss(
target_channels=self.token_embed_dim,
z_channels=decoder_embed_dim,
width=diffloss_w,
depth=diffloss_d,
num_sampling_steps=num_sampling_steps,
grad_checkpointing=grad_checkpointing
)
self.diffusion_batch_mul = diffusion_batch_mul
def initialize_weights(self):
# parameters
torch.nn.init.normal_(self.class_emb.weight, std=.02)
torch.nn.init.normal_(self.fake_latent, std=.02)
torch.nn.init.normal_(self.mask_token, std=.02)
torch.nn.init.normal_(self.encoder_pos_embed_learned, std=.02)
torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02)
torch.nn.init.normal_(self.diffusion_pos_embed_learned, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if m.weight is not None:
nn.init.constant_(m.weight, 1.0)
def patchify(self, x):
bsz, c, h, w = x.shape
p = self.patch_size
h_, w_ = h // p, w // p
x = x.reshape(bsz, c, h_, p, w_, p)
x = torch.einsum('nchpwq->nhwcpq', x)
x = x.reshape(bsz, h_ * w_, c * p ** 2)
return x # [n, l, d]
def unpatchify(self, x):
bsz = x.shape[0]
p = self.patch_size
c = self.vae_embed_dim
h_, w_ = self.seq_h, self.seq_w
x = x.reshape(bsz, h_, w_, c, p, p)
x = torch.einsum('nhwcpq->nchpwq', x)
x = x.reshape(bsz, c, h_ * p, w_ * p)
return x # [n, c, h, w]
def sample_orders(self, bsz):
# generate a batch of random generation orders
orders = []
for _ in range(bsz):
order = np.array(list(range(self.seq_len)))
np.random.shuffle(order)
orders.append(order)
orders = torch.Tensor(np.array(orders)).to(device).long()
return orders
def random_masking(self, x, orders):
# generate token mask
bsz, seq_len, embed_dim = x.shape
mask_rate = self.mask_ratio_generator.rvs(1)[0]
num_masked_tokens = int(np.ceil(seq_len * mask_rate))
mask = torch.zeros(bsz, seq_len, device=x.device)
mask = torch.scatter(mask, dim=-1, index=orders[:, :num_masked_tokens],
src=torch.ones(bsz, seq_len, device=x.device))
return mask
def forward_mae_encoder(self, x, mask, class_embedding):
x = self.z_proj(x)
bsz, seq_len, embed_dim = x.shape
# concat buffer
x = torch.cat([torch.zeros(bsz, self.buffer_size, embed_dim, device=x.device), x], dim=1)
mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1)
# random drop class embedding during training
if self.training:
drop_latent_mask = torch.rand(bsz) < self.label_drop_prob
drop_latent_mask = drop_latent_mask.unsqueeze(-1).to(device).to(x.dtype)
class_embedding = drop_latent_mask * self.fake_latent + (1 - drop_latent_mask) * class_embedding
x[:, :self.buffer_size] = class_embedding.unsqueeze(1)
# encoder position embedding
x = x + self.encoder_pos_embed_learned
x = self.z_proj_ln(x)
# dropping
x = x[(1-mask_with_buffer).nonzero(as_tuple=True)].reshape(bsz, -1, embed_dim)
# apply Transformer blocks
if self.grad_checkpointing and not torch.jit.is_scripting():
for block in self.encoder_blocks:
x = checkpoint(block, x)
else:
for block in self.encoder_blocks:
x = block(x)
x = self.encoder_norm(x)
return x
def forward_mae_decoder(self, x, mask):
x = self.decoder_embed(x)
mask_with_buffer = torch.cat([torch.zeros(x.size(0), self.buffer_size, device=x.device), mask], dim=1)
# pad mask tokens
mask_tokens = self.mask_token.repeat(mask_with_buffer.shape[0], mask_with_buffer.shape[1], 1).to(x.dtype)
x_after_pad = mask_tokens.clone()
x_after_pad[(1 - mask_with_buffer).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2])
# decoder position embedding
x = x_after_pad + self.decoder_pos_embed_learned
# apply Transformer blocks
if self.grad_checkpointing and not torch.jit.is_scripting():
for block in self.decoder_blocks:
x = checkpoint(block, x)
else:
for block in self.decoder_blocks:
x = block(x)
x = self.decoder_norm(x)
x = x[:, self.buffer_size:]
x = x + self.diffusion_pos_embed_learned
return x
def forward_loss(self, z, target, mask):
bsz, seq_len, _ = target.shape
target = target.reshape(bsz * seq_len, -1).repeat(self.diffusion_batch_mul, 1)
z = z.reshape(bsz*seq_len, -1).repeat(self.diffusion_batch_mul, 1)
mask = mask.reshape(bsz*seq_len).repeat(self.diffusion_batch_mul)
loss = self.diffloss(z=z, target=target, mask=mask)
return loss
def forward(self, imgs, labels):
# class embed
class_embedding = self.class_emb(labels)
# patchify and mask (drop) tokens
x = self.patchify(imgs)
gt_latents = x.clone().detach()
orders = self.sample_orders(bsz=x.size(0))
mask = self.random_masking(x, orders)
# mae encoder
x = self.forward_mae_encoder(x, mask, class_embedding)
# mae decoder
z = self.forward_mae_decoder(x, mask)
# diffloss
loss = self.forward_loss(z=z, target=gt_latents, mask=mask)
return loss
def sample_tokens(self, bsz, num_iter=64, cfg=1.0, cfg_schedule="linear", labels=None, temperature=1.0, progress=False):
# init and sample generation orders
mask = torch.ones(bsz, self.seq_len).to(device)
tokens = torch.zeros(bsz, self.seq_len, self.token_embed_dim).to(device)
orders = self.sample_orders(bsz)
indices = list(range(num_iter))
if progress:
indices = tqdm(indices)
# generate latents
for step in indices:
cur_tokens = tokens.clone()
# class embedding and CFG
if labels is not None:
class_embedding = self.class_emb(labels)
else:
class_embedding = self.fake_latent.repeat(bsz, 1)
if not cfg == 1.0:
tokens = torch.cat([tokens, tokens], dim=0)
class_embedding = torch.cat([class_embedding, self.fake_latent.repeat(bsz, 1)], dim=0)
mask = torch.cat([mask, mask], dim=0)
# mae encoder
x = self.forward_mae_encoder(tokens, mask, class_embedding)
# mae decoder
z = self.forward_mae_decoder(x, mask)
# mask ratio for the next round, following MaskGIT and MAGE.
mask_ratio = np.cos(math.pi / 2. * (step + 1) / num_iter)
mask_len = torch.Tensor([np.floor(self.seq_len * mask_ratio)]).to(device)
# masks out at least one for the next iteration
mask_len = torch.maximum(torch.Tensor([1]).to(device),
torch.minimum(torch.sum(mask, dim=-1, keepdims=True) - 1, mask_len))
# get masking for next iteration and locations to be predicted in this iteration
mask_next = mask_by_order(mask_len[0], orders, bsz, self.seq_len)
if step >= num_iter - 1:
mask_to_pred = mask[:bsz].bool()
else:
mask_to_pred = torch.logical_xor(mask[:bsz].bool(), mask_next.bool())
mask = mask_next
if not cfg == 1.0:
mask_to_pred = torch.cat([mask_to_pred, mask_to_pred], dim=0)
# sample token latents for this step
z = z[mask_to_pred.nonzero(as_tuple=True)]
# cfg schedule follow Muse
if cfg_schedule == "linear":
cfg_iter = 1 + (cfg - 1) * (self.seq_len - mask_len[0]) / self.seq_len
elif cfg_schedule == "constant":
cfg_iter = cfg
else:
raise NotImplementedError
sampled_token_latent = self.diffloss.sample(z, temperature, cfg_iter)
if not cfg == 1.0:
sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0) # Remove null class samples
mask_to_pred, _ = mask_to_pred.chunk(2, dim=0)
cur_tokens[mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent
tokens = cur_tokens.clone()
# unpatchify
tokens = self.unpatchify(tokens)
return tokens
def mar_base(**kwargs):
model = MAR(
encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12,
decoder_embed_dim=768, decoder_depth=12, decoder_num_heads=12,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mar_large(**kwargs):
model = MAR(
encoder_embed_dim=1024, encoder_depth=16, encoder_num_heads=16,
decoder_embed_dim=1024, decoder_depth=16, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mar_huge(**kwargs):
model = MAR(
encoder_embed_dim=1280, encoder_depth=20, encoder_num_heads=16,
decoder_embed_dim=1280, decoder_depth=20, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model |