|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import numpy as np |
|
import torch as th |
|
import enum |
|
|
|
from .diffusion_utils import discretized_gaussian_log_likelihood, normal_kl |
|
|
|
|
|
def mean_flat(tensor): |
|
""" |
|
Take the mean over all non-batch dimensions. |
|
""" |
|
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
|
|
|
|
|
class ModelMeanType(enum.Enum): |
|
""" |
|
Which type of output the model predicts. |
|
""" |
|
|
|
PREVIOUS_X = enum.auto() |
|
START_X = enum.auto() |
|
EPSILON = enum.auto() |
|
|
|
|
|
class ModelVarType(enum.Enum): |
|
""" |
|
What is used as the model's output variance. |
|
The LEARNED_RANGE option has been added to allow the model to predict |
|
values between FIXED_SMALL and FIXED_LARGE, making its job easier. |
|
""" |
|
|
|
LEARNED = enum.auto() |
|
FIXED_SMALL = enum.auto() |
|
FIXED_LARGE = enum.auto() |
|
LEARNED_RANGE = enum.auto() |
|
|
|
|
|
class LossType(enum.Enum): |
|
MSE = enum.auto() |
|
RESCALED_MSE = ( |
|
enum.auto() |
|
) |
|
KL = enum.auto() |
|
RESCALED_KL = enum.auto() |
|
|
|
def is_vb(self): |
|
return self == LossType.KL or self == LossType.RESCALED_KL |
|
|
|
|
|
def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac): |
|
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64) |
|
warmup_time = int(num_diffusion_timesteps * warmup_frac) |
|
betas[:warmup_time] = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64) |
|
return betas |
|
|
|
|
|
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps): |
|
""" |
|
This is the deprecated API for creating beta schedules. |
|
See get_named_beta_schedule() for the new library of schedules. |
|
""" |
|
if beta_schedule == "quad": |
|
betas = ( |
|
np.linspace( |
|
beta_start ** 0.5, |
|
beta_end ** 0.5, |
|
num_diffusion_timesteps, |
|
dtype=np.float64, |
|
) |
|
** 2 |
|
) |
|
elif beta_schedule == "linear": |
|
betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) |
|
elif beta_schedule == "warmup10": |
|
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1) |
|
elif beta_schedule == "warmup50": |
|
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5) |
|
elif beta_schedule == "const": |
|
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64) |
|
elif beta_schedule == "jsd": |
|
betas = 1.0 / np.linspace( |
|
num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64 |
|
) |
|
else: |
|
raise NotImplementedError(beta_schedule) |
|
assert betas.shape == (num_diffusion_timesteps,) |
|
return betas |
|
|
|
|
|
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): |
|
""" |
|
Get a pre-defined beta schedule for the given name. |
|
The beta schedule library consists of beta schedules which remain similar |
|
in the limit of num_diffusion_timesteps. |
|
Beta schedules may be added, but should not be removed or changed once |
|
they are committed to maintain backwards compatibility. |
|
""" |
|
if schedule_name == "linear": |
|
|
|
|
|
scale = 1000 / num_diffusion_timesteps |
|
return get_beta_schedule( |
|
"linear", |
|
beta_start=scale * 0.0001, |
|
beta_end=scale * 0.02, |
|
num_diffusion_timesteps=num_diffusion_timesteps, |
|
) |
|
elif schedule_name == "cosine": |
|
return betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, |
|
) |
|
else: |
|
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") |
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, |
|
which defines the cumulative product of (1-beta) over time from t = [0,1]. |
|
:param num_diffusion_timesteps: the number of betas to produce. |
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and |
|
produces the cumulative product of (1-beta) up to that |
|
part of the diffusion process. |
|
:param max_beta: the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
""" |
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return np.array(betas) |
|
|
|
|
|
class GaussianDiffusion: |
|
""" |
|
Utilities for training and sampling diffusion models. |
|
Original ported from this codebase: |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 |
|
:param betas: a 1-D numpy array of betas for each diffusion timestep, |
|
starting at T and going to 1. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
betas, |
|
model_mean_type, |
|
model_var_type, |
|
loss_type |
|
): |
|
|
|
self.model_mean_type = model_mean_type |
|
self.model_var_type = model_var_type |
|
self.loss_type = loss_type |
|
|
|
|
|
betas = np.array(betas, dtype=np.float64) |
|
self.betas = betas |
|
assert len(betas.shape) == 1, "betas must be 1-D" |
|
assert (betas > 0).all() and (betas <= 1).all() |
|
|
|
self.num_timesteps = int(betas.shape[0]) |
|
|
|
alphas = 1.0 - betas |
|
self.alphas_cumprod = np.cumprod(alphas, axis=0) |
|
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) |
|
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) |
|
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) |
|
|
|
|
|
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) |
|
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) |
|
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) |
|
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) |
|
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) |
|
|
|
|
|
self.posterior_variance = ( |
|
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) |
|
) |
|
|
|
self.posterior_log_variance_clipped = np.log( |
|
np.append(self.posterior_variance[1], self.posterior_variance[1:]) |
|
) if len(self.posterior_variance) > 1 else np.array([]) |
|
|
|
self.posterior_mean_coef1 = ( |
|
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) |
|
) |
|
self.posterior_mean_coef2 = ( |
|
(1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) |
|
) |
|
|
|
def q_mean_variance(self, x_start, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) |
|
return mean, variance, log_variance |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
""" |
|
Diffuse the data for a given number of diffusion steps. |
|
In other words, sample from q(x_t | x_0). |
|
:param x_start: the initial data batch. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:param noise: if specified, the split-out normal noise. |
|
:return: A noisy version of x_start. |
|
""" |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
assert noise.shape == x_start.shape |
|
return ( |
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise |
|
) |
|
|
|
def q_posterior_mean_variance(self, x_start, x_t, t): |
|
""" |
|
Compute the mean and variance of the diffusion posterior: |
|
q(x_{t-1} | x_t, x_0) |
|
""" |
|
assert x_start.shape == x_t.shape |
|
posterior_mean = ( |
|
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start |
|
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = _extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x_t.shape |
|
) |
|
assert ( |
|
posterior_mean.shape[0] |
|
== posterior_variance.shape[0] |
|
== posterior_log_variance_clipped.shape[0] |
|
== x_start.shape[0] |
|
) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance(self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None): |
|
""" |
|
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of |
|
the initial x, x_0. |
|
:param model: the model, which takes a signal and a batch of timesteps |
|
as input. |
|
:param x: the [N x C x ...] tensor at time t. |
|
:param t: a 1-D Tensor of timesteps. |
|
:param clip_denoised: if True, clip the denoised signal into [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. Applies before |
|
clip_denoised. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict with the following keys: |
|
- 'mean': the model mean output. |
|
- 'variance': the model variance output. |
|
- 'log_variance': the log of 'variance'. |
|
- 'pred_xstart': the prediction for x_0. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
|
|
B, C = x.shape[:2] |
|
assert t.shape == (B,) |
|
model_output = model(x, t, **model_kwargs) |
|
if isinstance(model_output, tuple): |
|
model_output, extra = model_output |
|
else: |
|
extra = None |
|
|
|
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: |
|
assert model_output.shape == (B, C * 2, *x.shape[2:]) |
|
model_output, model_var_values = th.split(model_output, C, dim=1) |
|
min_log = _extract_into_tensor(self.posterior_log_variance_clipped, t, x.shape) |
|
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) |
|
|
|
frac = (model_var_values + 1) / 2 |
|
model_log_variance = frac * max_log + (1 - frac) * min_log |
|
model_variance = th.exp(model_log_variance) |
|
else: |
|
model_variance, model_log_variance = { |
|
|
|
|
|
ModelVarType.FIXED_LARGE: ( |
|
np.append(self.posterior_variance[1], self.betas[1:]), |
|
np.log(np.append(self.posterior_variance[1], self.betas[1:])), |
|
), |
|
ModelVarType.FIXED_SMALL: ( |
|
self.posterior_variance, |
|
self.posterior_log_variance_clipped, |
|
), |
|
}[self.model_var_type] |
|
model_variance = _extract_into_tensor(model_variance, t, x.shape) |
|
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) |
|
|
|
def process_xstart(x): |
|
if denoised_fn is not None: |
|
x = denoised_fn(x) |
|
if clip_denoised: |
|
return x.clamp(-1, 1) |
|
return x |
|
|
|
if self.model_mean_type == ModelMeanType.START_X: |
|
pred_xstart = process_xstart(model_output) |
|
else: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) |
|
) |
|
model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t) |
|
|
|
assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape |
|
return { |
|
"mean": model_mean, |
|
"variance": model_variance, |
|
"log_variance": model_log_variance, |
|
"pred_xstart": pred_xstart, |
|
"extra": extra, |
|
} |
|
|
|
def _predict_xstart_from_eps(self, x_t, t, eps): |
|
assert x_t.shape == eps.shape |
|
return ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t |
|
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps |
|
) |
|
|
|
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): |
|
return ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart |
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) |
|
|
|
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): |
|
""" |
|
Compute the mean for the previous step, given a function cond_fn that |
|
computes the gradient of a conditional log probability with respect to |
|
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to |
|
condition on y. |
|
This uses the conditioning strategy from Sohl-Dickstein et al. (2015). |
|
""" |
|
gradient = cond_fn(x, t, **model_kwargs) |
|
new_mean = p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() |
|
return new_mean |
|
|
|
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): |
|
""" |
|
Compute what the p_mean_variance output would have been, should the |
|
model's score function be conditioned by cond_fn. |
|
See condition_mean() for details on cond_fn. |
|
Unlike condition_mean(), this instead uses the conditioning strategy |
|
from Song et al (2020). |
|
""" |
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) |
|
|
|
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) |
|
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **model_kwargs) |
|
|
|
out = p_mean_var.copy() |
|
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) |
|
out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t) |
|
return out |
|
|
|
def p_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
temperature=1.0 |
|
): |
|
""" |
|
Sample x_{t-1} from the model at the given timestep. |
|
:param model: the model to sample from. |
|
:param x: the current tensor at x_{t-1}. |
|
:param t: the value of t, starting at 0 for the first diffusion step. |
|
:param clip_denoised: if True, clip the x_start prediction to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param cond_fn: if not None, this is a gradient function that acts |
|
similarly to the model. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param temperature: temperature scaling during Diff Loss sampling. |
|
:return: a dict containing the following keys: |
|
- 'sample': a random sample from the model. |
|
- 'pred_xstart': a prediction of x_0. |
|
""" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
noise = th.randn_like(x) |
|
nonzero_mask = ( |
|
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
if cond_fn is not None: |
|
out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs) |
|
|
|
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise * temperature |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def p_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
temperature=1.0, |
|
): |
|
""" |
|
Generate samples from the model. |
|
:param model: the model module. |
|
:param shape: the shape of the samples, (N, C, H, W). |
|
:param noise: if specified, the noise from the encoder to sample. |
|
Should be of the same shape as `shape`. |
|
:param clip_denoised: if True, clip x_start predictions to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param cond_fn: if not None, this is a gradient function that acts |
|
similarly to the model. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param device: if specified, the device to create the samples on. |
|
If not specified, use a model parameter's device. |
|
:param progress: if True, show a tqdm progress bar. |
|
:param temperature: temperature scaling during Diff Loss sampling. |
|
:return: a non-differentiable batch of samples. |
|
""" |
|
final = None |
|
for sample in self.p_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
temperature=temperature, |
|
): |
|
final = sample |
|
return final["sample"] |
|
|
|
def p_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
temperature=1.0, |
|
): |
|
""" |
|
Generate samples from the model and yield intermediate samples from |
|
each timestep of diffusion. |
|
Arguments are the same as p_sample_loop(). |
|
Returns a generator over dicts, where each dict is the return value of |
|
p_sample(). |
|
""" |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
else: |
|
img = th.randn(*shape).to(device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
|
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * shape[0]).to(device) |
|
with th.no_grad(): |
|
out = self.p_sample( |
|
model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
temperature=temperature, |
|
) |
|
yield out |
|
img = out["sample"] |
|
|
|
def ddim_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
): |
|
""" |
|
Sample x_{t-1} from the model using DDIM. |
|
Same usage as p_sample(). |
|
""" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
if cond_fn is not None: |
|
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) |
|
|
|
|
|
|
|
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) |
|
|
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) |
|
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) |
|
sigma = ( |
|
eta |
|
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) |
|
* th.sqrt(1 - alpha_bar / alpha_bar_prev) |
|
) |
|
|
|
noise = th.randn_like(x) |
|
mean_pred = ( |
|
out["pred_xstart"] * th.sqrt(alpha_bar_prev) |
|
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps |
|
) |
|
nonzero_mask = ( |
|
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
sample = mean_pred + nonzero_mask * sigma * noise |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_reverse_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
): |
|
""" |
|
Sample x_{t+1} from the model using DDIM reverse ODE. |
|
""" |
|
assert eta == 0.0, "Reverse ODE only for deterministic path" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
if cond_fn is not None: |
|
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) |
|
|
|
|
|
eps = ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x |
|
- out["pred_xstart"] |
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) |
|
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) |
|
|
|
|
|
mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps |
|
|
|
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
): |
|
""" |
|
Generate samples from the model using DDIM. |
|
Same usage as p_sample_loop(). |
|
""" |
|
final = None |
|
for sample in self.ddim_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
eta=eta, |
|
): |
|
final = sample |
|
return final["sample"] |
|
|
|
def ddim_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
): |
|
""" |
|
Use DDIM to sample from the model and yield intermediate samples from |
|
each timestep of DDIM. |
|
Same usage as p_sample_loop_progressive(). |
|
""" |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
else: |
|
img = th.randn(*shape).to(device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
|
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * shape[0]).to(device) |
|
with th.no_grad(): |
|
out = self.ddim_sample( |
|
model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
eta=eta, |
|
) |
|
yield out |
|
img = out["sample"] |
|
|
|
def _vb_terms_bpd( |
|
self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None |
|
): |
|
""" |
|
Get a term for the variational lower-bound. |
|
The resulting units are bits (rather than nats, as one might expect). |
|
This allows for comparison to other papers. |
|
:return: a dict with the following keys: |
|
- 'output': a shape [N] tensor of NLLs or KLs. |
|
- 'pred_xstart': the x_0 predictions. |
|
""" |
|
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( |
|
x_start=x_start, x_t=x_t, t=t |
|
) |
|
out = self.p_mean_variance( |
|
model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs |
|
) |
|
kl = normal_kl( |
|
true_mean, true_log_variance_clipped, out["mean"], out["log_variance"] |
|
) |
|
kl = mean_flat(kl) / np.log(2.0) |
|
|
|
decoder_nll = -discretized_gaussian_log_likelihood( |
|
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] |
|
) |
|
assert decoder_nll.shape == x_start.shape |
|
decoder_nll = mean_flat(decoder_nll) / np.log(2.0) |
|
|
|
|
|
|
|
output = th.where((t == 0), decoder_nll, kl) |
|
return {"output": output, "pred_xstart": out["pred_xstart"]} |
|
|
|
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None): |
|
""" |
|
Compute training losses for a single timestep. |
|
:param model: the model to evaluate loss on. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:param t: a batch of timestep indices. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param noise: if specified, the specific Gaussian noise to try to remove. |
|
:return: a dict with the key "loss" containing a tensor of shape [N]. |
|
Some mean or variance settings may also have other keys. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
x_t = self.q_sample(x_start, t, noise=noise) |
|
|
|
terms = {} |
|
|
|
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: |
|
terms["loss"] = self._vb_terms_bpd( |
|
model=model, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t, |
|
clip_denoised=False, |
|
model_kwargs=model_kwargs, |
|
)["output"] |
|
if self.loss_type == LossType.RESCALED_KL: |
|
terms["loss"] *= self.num_timesteps |
|
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: |
|
model_output = model(x_t, t, **model_kwargs) |
|
|
|
if self.model_var_type in [ |
|
ModelVarType.LEARNED, |
|
ModelVarType.LEARNED_RANGE, |
|
]: |
|
B, C = x_t.shape[:2] |
|
assert model_output.shape == (B, C * 2, *x_t.shape[2:]) |
|
model_output, model_var_values = th.split(model_output, C, dim=1) |
|
|
|
|
|
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) |
|
terms["vb"] = self._vb_terms_bpd( |
|
model=lambda *args, r=frozen_out: r, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t, |
|
clip_denoised=False, |
|
)["output"] |
|
if self.loss_type == LossType.RESCALED_MSE: |
|
|
|
|
|
terms["vb"] *= self.num_timesteps / 1000.0 |
|
|
|
target = { |
|
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( |
|
x_start=x_start, x_t=x_t, t=t |
|
)[0], |
|
ModelMeanType.START_X: x_start, |
|
ModelMeanType.EPSILON: noise, |
|
}[self.model_mean_type] |
|
assert model_output.shape == target.shape == x_start.shape |
|
terms["mse"] = mean_flat((target - model_output) ** 2) |
|
if "vb" in terms: |
|
terms["loss"] = terms["mse"] + terms["vb"] |
|
else: |
|
terms["loss"] = terms["mse"] |
|
else: |
|
raise NotImplementedError(self.loss_type) |
|
|
|
return terms |
|
|
|
def _prior_bpd(self, x_start): |
|
""" |
|
Get the prior KL term for the variational lower-bound, measured in |
|
bits-per-dim. |
|
This term can't be optimized, as it only depends on the encoder. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:return: a batch of [N] KL values (in bits), one per batch element. |
|
""" |
|
batch_size = x_start.shape[0] |
|
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) |
|
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) |
|
kl_prior = normal_kl( |
|
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 |
|
) |
|
return mean_flat(kl_prior) / np.log(2.0) |
|
|
|
def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None): |
|
""" |
|
Compute the entire variational lower-bound, measured in bits-per-dim, |
|
as well as other related quantities. |
|
:param model: the model to evaluate loss on. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:param clip_denoised: if True, clip denoised samples. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict containing the following keys: |
|
- total_bpd: the total variational lower-bound, per batch element. |
|
- prior_bpd: the prior term in the lower-bound. |
|
- vb: an [N x T] tensor of terms in the lower-bound. |
|
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. |
|
- mse: an [N x T] tensor of epsilon MSEs for each timestep. |
|
""" |
|
device = x_start.device |
|
batch_size = x_start.shape[0] |
|
|
|
vb = [] |
|
xstart_mse = [] |
|
mse = [] |
|
for t in list(range(self.num_timesteps))[::-1]: |
|
t_batch = th.tensor([t] * batch_size, device=device) |
|
noise = th.randn_like(x_start) |
|
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) |
|
|
|
with th.no_grad(): |
|
out = self._vb_terms_bpd( |
|
model, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t_batch, |
|
clip_denoised=clip_denoised, |
|
model_kwargs=model_kwargs, |
|
) |
|
vb.append(out["output"]) |
|
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) |
|
eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) |
|
mse.append(mean_flat((eps - noise) ** 2)) |
|
|
|
vb = th.stack(vb, dim=1) |
|
xstart_mse = th.stack(xstart_mse, dim=1) |
|
mse = th.stack(mse, dim=1) |
|
|
|
prior_bpd = self._prior_bpd(x_start) |
|
total_bpd = vb.sum(dim=1) + prior_bpd |
|
return { |
|
"total_bpd": total_bpd, |
|
"prior_bpd": prior_bpd, |
|
"vb": vb, |
|
"xstart_mse": xstart_mse, |
|
"mse": mse, |
|
} |
|
|
|
|
|
def _extract_into_tensor(arr, timesteps, broadcast_shape): |
|
""" |
|
Extract values from a 1-D numpy array for a batch of indices. |
|
:param arr: the 1-D numpy array. |
|
:param timesteps: a tensor of indices into the array to extract. |
|
:param broadcast_shape: a larger shape of K dimensions with the batch |
|
dimension equal to the length of timesteps. |
|
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. |
|
""" |
|
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() |
|
while len(res.shape) < len(broadcast_shape): |
|
res = res[..., None] |
|
return res + th.zeros(broadcast_shape, device=timesteps.device) |