|
from diffusers import DiffusionPipeline |
|
import torch |
|
import numpy as np |
|
import importlib.util |
|
import sys |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
import os |
|
from torchvision.utils import save_image |
|
from PIL import Image |
|
from safetensors.torch import load_file |
|
from .vae import AutoencoderKL |
|
from .mar import mar_base, mar_large, mar_huge |
|
|
|
|
|
class MARModel(DiffusionPipeline): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
@torch.no_grad() |
|
def __call__(self, *args, **kwargs): |
|
""" |
|
This method downloads the model and VAE components, |
|
then executes the forward pass based on the user's input. |
|
""" |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
|
|
|
|
buffer_size = kwargs.get("buffer_size", 64) |
|
diffloss_d = kwargs.get("diffloss_d", 3) |
|
diffloss_w = kwargs.get("diffloss_w", 1024) |
|
num_sampling_steps = kwargs.get("num_sampling_steps", 100) |
|
model_type = kwargs.get("model_type", "mar_base") |
|
|
|
model_mapping = { |
|
"mar_base": mar_base, |
|
"mar_large": mar_large, |
|
"mar_huge": mar_huge |
|
} |
|
|
|
num_sampling_steps_diffloss = 100 |
|
|
|
|
|
if model_type == "mar_base": |
|
diffloss_d = 6 |
|
diffloss_w = 1024 |
|
model_path = "mar-base.safetensors" |
|
elif model_type == "mar_large": |
|
diffloss_d = 8 |
|
diffloss_w = 1280 |
|
model_path = "mar-large.safetensors" |
|
elif model_type == "mar_huge": |
|
diffloss_d = 12 |
|
diffloss_w = 1536 |
|
model_path = "mar-huge.safetensors" |
|
else: |
|
raise NotImplementedError |
|
|
|
model_checkpoint_path = hf_hub_download( |
|
repo_id=kwargs.get("repo_id", "jadechoghari/mar"), |
|
filename=kwargs.get("model_filename", model_path) |
|
) |
|
|
|
model_fn = model_mapping[model_type] |
|
|
|
model = model_fn( |
|
buffer_size=64, |
|
diffloss_d=diffloss_d, |
|
diffloss_w=diffloss_w, |
|
num_sampling_steps=str(num_sampling_steps_diffloss) |
|
).cuda() |
|
|
|
|
|
state_dict = load_file(model_checkpoint_path) |
|
model.load_state_dict(state_dict) |
|
model.eval() |
|
|
|
|
|
vae_checkpoint_path = hf_hub_download( |
|
repo_id=kwargs.get("repo_id", "jadechoghari/mar"), |
|
filename=kwargs.get("vae_filename", "kl16.safetensors") |
|
) |
|
vae_checkpoint_path = kwargs.get("vae_checkpoint_path", vae_checkpoint_path) |
|
|
|
vae = AutoencoderKL(embed_dim=16, ch_mult=(1, 1, 2, 2, 4), ckpt_path=vae_checkpoint_path) |
|
vae = vae.to(device).eval() |
|
|
|
|
|
seed = kwargs.get("seed", 6) |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
num_ar_steps = kwargs.get("num_ar_steps", 64) |
|
cfg_scale = kwargs.get("cfg_scale", 4) |
|
cfg_schedule = kwargs.get("cfg_schedule", "constant") |
|
temperature = kwargs.get("temperature", 1.0) |
|
class_labels = kwargs.get("class_labels", [207, 360, 388, 113, 355, 980, 323, 979]) |
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
sampled_tokens = model.sample_tokens( |
|
bsz=len(class_labels), num_iter=num_ar_steps, |
|
cfg=cfg_scale, cfg_schedule=cfg_schedule, |
|
labels=torch.Tensor(class_labels).long().cuda(), |
|
temperature=temperature, progress=True |
|
) |
|
|
|
sampled_images = vae.decode(sampled_tokens / 0.2325) |
|
|
|
output_dir = kwargs.get("output_dir", "./") |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
image_path = os.path.join(output_dir, "sampled_image.png") |
|
samples_per_row = kwargs.get("samples_per_row", 4) |
|
|
|
save_image( |
|
sampled_images, image_path, nrow=int(samples_per_row), normalize=True, value_range=(-1, 1) |
|
) |
|
|
|
|
|
image = Image.open(image_path) |
|
|
|
return image |
|
|
|
|