|
import torch |
|
import torch.nn as nn |
|
from torch.utils.checkpoint import checkpoint |
|
import math |
|
|
|
from .diffusion import create_diffusion |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
class DiffLoss(nn.Module): |
|
"""Diffusion Loss""" |
|
def __init__(self, target_channels, z_channels, depth, width, num_sampling_steps, grad_checkpointing=False): |
|
super(DiffLoss, self).__init__() |
|
self.in_channels = target_channels |
|
self.net = SimpleMLPAdaLN( |
|
in_channels=target_channels, |
|
model_channels=width, |
|
out_channels=target_channels * 2, |
|
z_channels=z_channels, |
|
num_res_blocks=depth, |
|
grad_checkpointing=grad_checkpointing |
|
) |
|
|
|
self.train_diffusion = create_diffusion(timestep_respacing="", noise_schedule="cosine") |
|
self.gen_diffusion = create_diffusion(timestep_respacing=num_sampling_steps, noise_schedule="cosine") |
|
|
|
def forward(self, target, z, mask=None): |
|
t = torch.randint(0, self.train_diffusion.num_timesteps, (target.shape[0],), device=target.device) |
|
model_kwargs = dict(c=z) |
|
loss_dict = self.train_diffusion.training_losses(self.net, target, t, model_kwargs) |
|
loss = loss_dict["loss"] |
|
if mask is not None: |
|
loss = (loss * mask).sum() / mask.sum() |
|
return loss.mean() |
|
|
|
def sample(self, z, temperature=1.0, cfg=1.0): |
|
|
|
if not cfg == 1.0: |
|
noise = torch.randn(z.shape[0] // 2, self.in_channels).to(device) |
|
noise = torch.cat([noise, noise], dim=0) |
|
model_kwargs = dict(c=z, cfg_scale=cfg) |
|
sample_fn = self.net.forward_with_cfg |
|
else: |
|
noise = torch.randn(z.shape[0], self.in_channels).to(device) |
|
model_kwargs = dict(c=z) |
|
sample_fn = self.net.forward |
|
|
|
sampled_token_latent = self.gen_diffusion.p_sample_loop( |
|
sample_fn, noise.shape, noise, clip_denoised=False, model_kwargs=model_kwargs, progress=False, |
|
temperature=temperature |
|
) |
|
|
|
return sampled_token_latent |
|
|
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale) + shift |
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
|
|
@staticmethod |
|
def timestep_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half |
|
).to(device=t.device) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
def forward(self, t): |
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
|
|
class ResBlock(nn.Module): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
:param channels: the number of input channels. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
|
|
self.in_ln = nn.LayerNorm(channels, eps=1e-6) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(channels, channels, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(channels, channels, bias=True), |
|
) |
|
|
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(channels, 3 * channels, bias=True) |
|
) |
|
|
|
def forward(self, x, y): |
|
shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(y).chunk(3, dim=-1) |
|
h = modulate(self.in_ln(x), shift_mlp, scale_mlp) |
|
h = self.mlp(h) |
|
return x + gate_mlp * h |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of DiT. |
|
""" |
|
def __init__(self, model_channels, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(model_channels, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(model_channels, out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(model_channels, 2 * model_channels, bias=True) |
|
) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class SimpleMLPAdaLN(nn.Module): |
|
""" |
|
The MLP for Diffusion Loss. |
|
:param in_channels: channels in the input Tensor. |
|
:param model_channels: base channel count for the model. |
|
:param out_channels: channels in the output Tensor. |
|
:param z_channels: channels in the condition. |
|
:param num_res_blocks: number of residual blocks per downsample. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
model_channels, |
|
out_channels, |
|
z_channels, |
|
num_res_blocks, |
|
grad_checkpointing=False |
|
): |
|
super().__init__() |
|
|
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.grad_checkpointing = grad_checkpointing |
|
|
|
self.time_embed = TimestepEmbedder(model_channels) |
|
self.cond_embed = nn.Linear(z_channels, model_channels) |
|
|
|
self.input_proj = nn.Linear(in_channels, model_channels) |
|
|
|
res_blocks = [] |
|
for i in range(num_res_blocks): |
|
res_blocks.append(ResBlock( |
|
model_channels, |
|
)) |
|
|
|
self.res_blocks = nn.ModuleList(res_blocks) |
|
self.final_layer = FinalLayer(model_channels, out_channels) |
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
self.apply(_basic_init) |
|
|
|
|
|
nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02) |
|
|
|
|
|
for block in self.res_blocks: |
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) |
|
|
|
|
|
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) |
|
nn.init.constant_(self.final_layer.linear.weight, 0) |
|
nn.init.constant_(self.final_layer.linear.bias, 0) |
|
|
|
def forward(self, x, t, c): |
|
""" |
|
Apply the model to an input batch. |
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param t: a 1-D batch of timesteps. |
|
:param c: conditioning from AR transformer. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
x = self.input_proj(x) |
|
t = self.time_embed(t) |
|
c = self.cond_embed(c) |
|
|
|
y = t + c |
|
|
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
for block in self.res_blocks: |
|
x = checkpoint(block, x, y) |
|
else: |
|
for block in self.res_blocks: |
|
x = block(x, y) |
|
|
|
return self.final_layer(x, y) |
|
|
|
def forward_with_cfg(self, x, t, c, cfg_scale): |
|
half = x[: len(x) // 2] |
|
combined = torch.cat([half, half], dim=0) |
|
model_out = self.forward(combined, t, c) |
|
eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] |
|
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) |
|
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) |
|
eps = torch.cat([half_eps, half_eps], dim=0) |
|
return torch.cat([eps, rest], dim=1) |