mar / pipeline.py
jadechoghari's picture
Update pipeline.py
9ff7343 verified
from diffusers import DiffusionPipeline
import torch
import numpy as np
import importlib.util
import sys
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import os
from torchvision.utils import save_image
from PIL import Image
from safetensors.torch import load_file
from .vae import AutoencoderKL
from .mar import mar_base, mar_large, mar_huge
# inheriting from DiffusionPipeline for HF
class MARModel(DiffusionPipeline):
def __init__(self):
super().__init__()
@torch.no_grad()
def __call__(self, *args, **kwargs):
"""
This method downloads the model and VAE components,
then executes the forward pass based on the user's input.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# init the mar model architecture
buffer_size = kwargs.get("buffer_size", 64)
diffloss_d = kwargs.get("diffloss_d", 3)
diffloss_w = kwargs.get("diffloss_w", 1024)
num_sampling_steps = kwargs.get("num_sampling_steps", 100)
model_type = kwargs.get("model_type", "mar_base")
model_mapping = {
"mar_base": mar_base,
"mar_large": mar_large,
"mar_huge": mar_huge
}
num_sampling_steps_diffloss = 100 # Example number of sampling steps
# download the pretrained model and set diffloss parameters
if model_type == "mar_base":
diffloss_d = 6
diffloss_w = 1024
model_path = "mar-base.safetensors"
elif model_type == "mar_large":
diffloss_d = 8
diffloss_w = 1280
model_path = "mar-large.safetensors"
elif model_type == "mar_huge":
diffloss_d = 12
diffloss_w = 1536
model_path = "mar-huge.safetensors"
else:
raise NotImplementedError
# download and load the model weights (.safetensors or .pth)
model_checkpoint_path = hf_hub_download(
repo_id=kwargs.get("repo_id", "jadechoghari/mar"),
filename=kwargs.get("model_filename", model_path)
)
model_fn = model_mapping[model_type]
model = model_fn(
buffer_size=64,
diffloss_d=diffloss_d,
diffloss_w=diffloss_w,
num_sampling_steps=str(num_sampling_steps_diffloss)
).cuda()
# use safetensors
state_dict = load_file(model_checkpoint_path)
model.load_state_dict(state_dict)
model.eval()
# download and load the vae
vae_checkpoint_path = hf_hub_download(
repo_id=kwargs.get("repo_id", "jadechoghari/mar"),
filename=kwargs.get("vae_filename", "kl16.safetensors")
)
vae_checkpoint_path = kwargs.get("vae_checkpoint_path", vae_checkpoint_path)
vae = AutoencoderKL(embed_dim=16, ch_mult=(1, 1, 2, 2, 4), ckpt_path=vae_checkpoint_path)
vae = vae.to(device).eval()
# set up user-specified or default values for generation
seed = kwargs.get("seed", 6)
torch.manual_seed(seed)
np.random.seed(seed)
num_ar_steps = kwargs.get("num_ar_steps", 64)
cfg_scale = kwargs.get("cfg_scale", 4)
cfg_schedule = kwargs.get("cfg_schedule", "constant")
temperature = kwargs.get("temperature", 1.0)
class_labels = kwargs.get("class_labels", [207, 360, 388, 113, 355, 980, 323, 979])
# generate the tokens and images
with torch.cuda.amp.autocast():
sampled_tokens = model.sample_tokens(
bsz=len(class_labels), num_iter=num_ar_steps,
cfg=cfg_scale, cfg_schedule=cfg_schedule,
labels=torch.Tensor(class_labels).long().cuda(),
temperature=temperature, progress=True
)
sampled_images = vae.decode(sampled_tokens / 0.2325)
output_dir = kwargs.get("output_dir", "./")
os.makedirs(output_dir, exist_ok=True)
# save the images
image_path = os.path.join(output_dir, "sampled_image.png")
samples_per_row = kwargs.get("samples_per_row", 4)
save_image(
sampled_images, image_path, nrow=int(samples_per_row), normalize=True, value_range=(-1, 1)
)
# return as a pil image
image = Image.open(image_path)
return image