File size: 8,792 Bytes
5085882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import sys

# sys.path.append("src")
import shutil
import os

os.environ["TOKENIZERS_PARALLELISM"] = "true"

import argparse
import yaml
import torch


from tqdm import tqdm
from pytorch_lightning.strategies.ddp import DDPStrategy


from audioldm_train.modules.latent_diffusion.ddpm import LatentDiffusion


from torch.utils.data import WeightedRandomSampler
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger


from audioldm_train.utilities.tools import (
    listdir_nohidden,
    get_restore_step,
    copy_test_subset_data,
)
import wandb
from audioldm_train.utilities.model_util import instantiate_from_config
import logging

logging.basicConfig(level=logging.WARNING)



def convert_path(path):
    parts = path.decode().split("/")[-4:]
    base = ""
    result = "/".join(parts)

def print_on_rank0(msg):
    if torch.distributed.get_rank() == 0:
        print(msg)


def main(configs, config_yaml_path, exp_group_name, exp_name, perform_validation):
    print("MAIN START")
    # cpth = "/train20/intern/permanent/changli7/dataset_ptm/test_dataset/dataset/audioset/zip_audios/unbalanced_train_segments/unbalanced_train_segments_part9/Y7fmOlUlwoNg.wav"
    # convert_path(cpth)
    if "seed" in configs.keys():
        seed_everything(configs["seed"])
    else:
        print("SEED EVERYTHING TO 0")
        seed_everything(1234)

    if "precision" in configs.keys():
        torch.set_float32_matmul_precision(
            configs["precision"]
        )  # highest, high, medium

    log_path = configs["log_directory"]
    batch_size = configs["model"]["params"]["batchsize"]

    train_lmdb_path = configs["train_path"]["train_lmdb_path"]
    train_key_path = [_ + '/data_key.key' for _ in train_lmdb_path]

    val_lmdb_path = configs["val_path"]["val_lmdb_path"]
    val_key_path = configs["val_path"]["val_key_path"]
    

    #try:
    mos_path = configs["mos_path"]
    from audioldm_train.utilities.data.hhhh import AudioDataset
    dataset = AudioDataset(config=configs, lmdb_path=train_lmdb_path, key_path=train_key_path, mos_path=mos_path)
    

    loader = DataLoader(
        dataset,
        batch_size=batch_size,
        num_workers=8,
        pin_memory=True,
        shuffle=True,
    )
    
   

    print(
        "The length of the dataset is %s, the length of the dataloader is %s, the batchsize is %s"
        % (len(dataset), len(loader), batch_size)
    )
    try:
        val_dataset = AudioDataset(config=configs, lmdb_path=val_lmdb_path, key_path=val_key_path, mos_path=mos_path)
    except:
        val_dataset = AudioDataset(config=configs, lmdb_path=val_lmdb_path, key_path=val_key_path)

    val_loader = DataLoader(
        val_dataset,
        batch_size=8,
    )

    # Copy test data
    import os 
    test_data_subset_folder = os.path.join(
        os.path.dirname(configs["log_directory"]),
        "testset_data",
        "tmp",
    )
    os.makedirs(test_data_subset_folder, exist_ok=True)
    # copy to test:
    # import pdb
    # pdb.set_trace()
    # for i in range(len(val_dataset.keys)):
    #     key_tmp = val_dataset.keys[i].decode()
    #     cmd = "cp {} {}".format(key_tmp, os.path.join(test_data_subset_folder))
    #     os.system(cmd)

    try:
        config_reload_from_ckpt = configs["reload_from_ckpt"]
    except:
        config_reload_from_ckpt = None

    try:
        limit_val_batches = configs["step"]["limit_val_batches"]
    except:
        limit_val_batches = None
    
    
    validation_every_n_epochs = configs["step"]["validation_every_n_epochs"]
    save_checkpoint_every_n_steps = configs["step"]["save_checkpoint_every_n_steps"]
    max_steps = configs["step"]["max_steps"]
    save_top_k = configs["step"]["save_top_k"]

    checkpoint_path = os.path.join(log_path, exp_group_name, exp_name, "checkpoints")

    wandb_path = os.path.join(log_path, exp_group_name, exp_name)

    checkpoint_callback = ModelCheckpoint(
        dirpath=checkpoint_path,
        monitor="global_step",
        mode="max",
        filename="checkpoint-fad-{val/frechet_inception_distance:.2f}-global_step={global_step:.0f}",
        every_n_train_steps=save_checkpoint_every_n_steps,
        save_top_k=save_top_k,
        auto_insert_metric_name=False,
        save_last=False,
    )

    os.makedirs(checkpoint_path, exist_ok=True)
    # shutil.copy(config_yaml_path, wandb_path)

    if len(os.listdir(checkpoint_path)) > 0:
        print("Load checkpoint from path: %s" % checkpoint_path)
        restore_step, n_step = get_restore_step(checkpoint_path)
        resume_from_checkpoint = os.path.join(checkpoint_path, restore_step)
        print("Resume from checkpoint", resume_from_checkpoint)
    elif config_reload_from_ckpt is not None:
        resume_from_checkpoint = config_reload_from_ckpt
        print("Reload ckpt specified in the config file %s" % resume_from_checkpoint)
    else:
        print("Train from scratch")
        resume_from_checkpoint = None

    devices = torch.cuda.device_count()
    latent_diffusion = instantiate_from_config(configs["model"])
    latent_diffusion.set_log_dir(log_path, exp_group_name, exp_name)

    wandb_logger = WandbLogger(
        save_dir=wandb_path,
        project=configs["project"],
        config=configs,
        name="%s/%s" % (exp_group_name, exp_name),
    )

    latent_diffusion.test_data_subset_path = test_data_subset_folder

    print("==> Save checkpoint every %s steps" % save_checkpoint_every_n_steps)
    print("==> Perform validation every %s epochs" % validation_every_n_epochs)
    
    trainer = Trainer(
        accelerator="auto",
        devices="auto",
        logger=wandb_logger,
        max_steps=max_steps,
        num_sanity_val_steps=1,
        limit_val_batches=limit_val_batches,
        check_val_every_n_epoch=validation_every_n_epochs,
        strategy=DDPStrategy(find_unused_parameters=True),
        gradient_clip_val=2.0,callbacks=[checkpoint_callback],num_nodes=1,
    )

    trainer.fit(latent_diffusion, loader, val_loader, ckpt_path=resume_from_checkpoint)

    ################################################################################################################
    # if(resume_from_checkpoint is not None):
    #     ckpt = torch.load(resume_from_checkpoint)["state_dict"]

    #     key_not_in_model_state_dict = []
    #     size_mismatch_keys = []
    #     state_dict = latent_diffusion.state_dict()
    #     print("Filtering key for reloading:", resume_from_checkpoint)
    #     print("State dict key size:", len(list(state_dict.keys())), len(list(ckpt.keys())))
    #     for key in tqdm(list(ckpt.keys())):
    #         if(key not in state_dict.keys()):
    #             key_not_in_model_state_dict.append(key)
    #             del ckpt[key]
    #             continue
    #         if(state_dict[key].size() != ckpt[key].size()):
    #             del ckpt[key]
    #             size_mismatch_keys.append(key)

    #     if(len(key_not_in_model_state_dict) != 0 or len(size_mismatch_keys) != 0):
    #         print("⛳", end=" ")

    #     print("==> Warning: The following key in the checkpoint is not presented in the model:", key_not_in_model_state_dict)
    #     print("==> Warning: These keys have different size between checkpoint and current model: ", size_mismatch_keys)

    #     latent_diffusion.load_state_dict(ckpt, strict=False)

    # if(perform_validation):
    #     trainer.validate(latent_diffusion, val_loader)

    # trainer.fit(latent_diffusion, loader, val_loader)
    ################################################################################################################


if __name__ == "__main__":
    print("ok")
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-c",
        "--config_yaml",
        type=str,
        required=False,
        help="path to config .yaml file",
    )
    parser.add_argument("--val", action="store_true")
    args = parser.parse_args()
    perform_validation = args.val
    assert torch.cuda.is_available(), "CUDA is not available"
    config_yaml = args.config_yaml
    exp_name = os.path.basename(config_yaml.split(".")[0])
    exp_group_name = os.path.basename(os.path.dirname(config_yaml))
    config_yaml_path = os.path.join(config_yaml)
    config_yaml = yaml.load(open(config_yaml_path, "r"), Loader=yaml.FullLoader)

    if perform_validation:
        config_yaml["model"]["params"]["cond_stage_config"][
            "crossattn_audiomae_generated"
        ]["params"]["use_gt_mae_output"] = False
        config_yaml["step"]["limit_val_batches"] = None

    main(config_yaml, config_yaml_path, exp_group_name, exp_name, perform_validation)