File size: 17,875 Bytes
5085882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
"""SAMPLING ONLY."""

import torch
import numpy as np
from tqdm import tqdm
from functools import partial

from audioldm_train.utilities.diffusion_util import (
    make_ddim_sampling_parameters,
    make_ddim_timesteps,
    noise_like,
    extract_into_tensor,
)


class DDIMSampler(object):
    def __init__(self, model, schedule="linear", device=torch.device("cuda"), **kwargs):
        super().__init__()
        self.model = model
        self.ddpm_num_timesteps = model.num_timesteps
        self.schedule = schedule
        self.device = device

    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
            if attr.device != self.device:
                attr = attr.to(self.device)
        setattr(self, name, attr)

    def make_schedule(
        self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
    ):
        self.ddim_timesteps = make_ddim_timesteps(
            ddim_discr_method=ddim_discretize,
            num_ddim_timesteps=ddim_num_steps,
            num_ddpm_timesteps=self.ddpm_num_timesteps,
            verbose=verbose,
        )
        alphas_cumprod = self.model.alphas_cumprod
        assert (
            alphas_cumprod.shape[0] == self.ddpm_num_timesteps
        ), "alphas have to be defined for each timestep"
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)

        self.register_buffer("betas", to_torch(self.model.betas))
        self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
        self.register_buffer(
            "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
        )

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer(
            "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
        )
        self.register_buffer(
            "sqrt_one_minus_alphas_cumprod",
            to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
        )
        self.register_buffer(
            "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
        )
        self.register_buffer(
            "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
        )
        self.register_buffer(
            "sqrt_recipm1_alphas_cumprod",
            to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
        )

        # ddim sampling parameters
        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
            alphacums=alphas_cumprod.cpu(),
            ddim_timesteps=self.ddim_timesteps,
            eta=ddim_eta,
            verbose=verbose,
        )
        self.register_buffer("ddim_sigmas", ddim_sigmas)
        self.register_buffer("ddim_alphas", ddim_alphas)
        self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
        self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
            (1 - self.alphas_cumprod_prev)
            / (1 - self.alphas_cumprod)
            * (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
        )
        self.register_buffer(
            "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
        )

    @torch.no_grad()
    def sample(
        self,
        S,
        batch_size,
        shape,
        conditioning=None,
        callback=None,
        normals_sequence=None,
        img_callback=None,
        quantize_x0=False,
        eta=0.0,
        mask=None,
        x0=None,
        temperature=1.0,
        noise_dropout=0.0,
        score_corrector=None,
        corrector_kwargs=None,
        verbose=True,
        x_T=None,
        log_every_t=100,
        unconditional_guidance_scale=1.0,
        unconditional_conditioning=None,  # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
        dynamic_threshold=None,
        ucg_schedule=None,
        **kwargs,
    ):

        # if conditioning is not None:
        #     if isinstance(conditioning, dict):
        #         ctmp = conditioning[list(conditioning.keys())[0]]
        #         while isinstance(ctmp, list): ctmp = ctmp[0]
        #         cbs = ctmp.shape[0]
        #         if cbs != batch_size:
        #             print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")

        #     elif isinstance(conditioning, list):
        #         for ctmp in conditioning:
        #             if ctmp.shape[0] != batch_size:
        #                 print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")

        #     else:
        #         if conditioning.shape[0] != batch_size:
        #             print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")

        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
        # sampling
        C, H, W = shape
        size = (batch_size, C, H, W)
        print(f"Data shape for DDIM sampling is {size}, eta {eta}")
        # import pdb 
        # pdb.set_trace()
        samples, intermediates = self.ddim_sampling(
            conditioning,
            size,
            callback=callback,
            img_callback=img_callback,
            quantize_denoised=quantize_x0,
            mask=mask,
            x0=x0,
            ddim_use_original_steps=False,
            noise_dropout=noise_dropout,
            temperature=temperature,
            score_corrector=score_corrector,
            corrector_kwargs=corrector_kwargs,
            x_T=x_T,
            log_every_t=log_every_t,
            unconditional_guidance_scale=unconditional_guidance_scale,
            unconditional_conditioning=unconditional_conditioning,
            dynamic_threshold=dynamic_threshold,
            ucg_schedule=ucg_schedule,
        )
        return samples, intermediates

    @torch.no_grad()
    def ddim_sampling(
        self,
        cond,
        shape,
        x_T=None,
        ddim_use_original_steps=False,
        callback=None,
        timesteps=None,
        quantize_denoised=False,
        mask=None,
        x0=None,
        img_callback=None,
        log_every_t=100,
        temperature=1.0,
        noise_dropout=0.0,
        score_corrector=None,
        corrector_kwargs=None,
        unconditional_guidance_scale=1.0,
        unconditional_conditioning=None,
        dynamic_threshold=None,
        ucg_schedule=None,
    ):
        device = self.model.betas.device
        b = shape[0]
        if x_T is None:
            img = torch.randn(shape, device=device)
        else:
            img = x_T

        if timesteps is None:
            timesteps = (
                self.ddpm_num_timesteps
                if ddim_use_original_steps
                else self.ddim_timesteps
            )
        elif timesteps is not None and not ddim_use_original_steps:
            subset_end = (
                int(
                    min(timesteps / self.ddim_timesteps.shape[0], 1)
                    * self.ddim_timesteps.shape[0]
                )
                - 1
            )
            timesteps = self.ddim_timesteps[:subset_end]

        intermediates = {"x_inter": [img], "pred_x0": [img]}
        time_range = (
            reversed(range(0, timesteps))
            if ddim_use_original_steps
            else np.flip(timesteps)
        )
        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
        print(f"Running DDIM Sampling with {total_steps} timesteps")

        iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)

        for i, step in enumerate(iterator):
            index = total_steps - i - 1
            ts = torch.full((b,), step, device=device, dtype=torch.long)

            if mask is not None:
                assert x0 is not None
                img_orig = self.model.q_sample(
                    x0, ts
                )  # TODO: deterministic forward pass?
                img = img_orig * mask + (1.0 - mask) * img

            if ucg_schedule is not None:
                assert len(ucg_schedule) == len(time_range)
                unconditional_guidance_scale = ucg_schedule[i]
            # import pdb; pdb.set_trace()
            outs = self.p_sample_ddim(
                img,
                cond,
                ts,
                index=index,
                use_original_steps=ddim_use_original_steps,
                quantize_denoised=quantize_denoised,
                temperature=temperature,
                noise_dropout=noise_dropout,
                score_corrector=score_corrector,
                corrector_kwargs=corrector_kwargs,
                unconditional_guidance_scale=unconditional_guidance_scale,
                unconditional_conditioning=unconditional_conditioning,
                dynamic_threshold=dynamic_threshold,
            )
            img, pred_x0 = outs
            if callback:
                callback(i)
            if img_callback:
                img_callback(pred_x0, i)

            if index % log_every_t == 0 or index == total_steps - 1:
                intermediates["x_inter"].append(img)
                intermediates["pred_x0"].append(pred_x0)

        return img, intermediates

    @torch.no_grad()
    def p_sample_ddim(
        self,
        x,
        c,
        t,
        index,
        repeat_noise=False,
        use_original_steps=False,
        quantize_denoised=False,
        temperature=1.0,
        noise_dropout=0.0,
        score_corrector=None,
        corrector_kwargs=None,
        unconditional_guidance_scale=1.0,
        unconditional_conditioning=None,
        dynamic_threshold=None,
    ):
        b, *_, device = *x.shape, x.device

        if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
            model_output = self.model.apply_model(x, t, c)
        else:
            x_in = x
            t_in = t

            assert isinstance(c, dict)
            assert isinstance(unconditional_conditioning, dict)
            # import pdb; pdb.set_trace()
            unconditional_conditioning['mos'] = torch.ones(x_in.shape[0], 1) * 3
            model_uncond = self.model.apply_model(
                x_in, t_in, unconditional_conditioning
            )
            
            model_t = self.model.apply_model(x_in, t_in, c)
            
            model_output = model_uncond + unconditional_guidance_scale * (
                model_t - model_uncond
            )

        if self.model.parameterization == "v":
            e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
        else:
            e_t = model_output

        if score_corrector is not None:
            assert self.model.parameterization == "eps", "not implemented"
            e_t = score_corrector.modify_score(
                self.model, e_t, x, t, c, **corrector_kwargs
            )

        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        alphas_prev = (
            self.model.alphas_cumprod_prev
            if use_original_steps
            else self.ddim_alphas_prev
        )
        sqrt_one_minus_alphas = (
            self.model.sqrt_one_minus_alphas_cumprod
            if use_original_steps
            else self.ddim_sqrt_one_minus_alphas
        )
        sigmas = (
            self.model.ddim_sigmas_for_original_num_steps
            if use_original_steps
            else self.ddim_sigmas
        )
        # select parameters corresponding to the currently considered timestep
        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
        sqrt_one_minus_at = torch.full(
            (b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
        )

        # print(unconditional_conditioning, unconditional_guidance_scale)
        # print(model_uncond.shape, model_t.shape, model_output.shape)
        # print(x.shape, self.model.parameterization)
        # print(sqrt_one_minus_at.shape, e_t.shape, a_t.shape)
        # import pdb
        # pdb.set_trace()

        # current prediction for x_0
        if self.model.parameterization != "v":
            # import pdb 
            # pdb.set_trace()
            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
        else:
            pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)

        if quantize_denoised:
            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)

        if dynamic_threshold is not None:
            raise NotImplementedError()

        # direction pointing to x_t
        dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
        if noise_dropout > 0.0:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
        return x_prev, pred_x0

    @torch.no_grad()
    def encode(
        self,
        x0,
        c,
        t_enc,
        use_original_steps=False,
        return_intermediates=None,
        unconditional_guidance_scale=1.0,
        unconditional_conditioning=None,
        callback=None,
    ):
        num_reference_steps = (
            self.ddpm_num_timesteps
            if use_original_steps
            else self.ddim_timesteps.shape[0]
        )

        assert t_enc <= num_reference_steps
        num_steps = t_enc

        if use_original_steps:
            alphas_next = self.alphas_cumprod[:num_steps]
            alphas = self.alphas_cumprod_prev[:num_steps]
        else:
            alphas_next = self.ddim_alphas[:num_steps]
            alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])

        x_next = x0
        intermediates = []
        inter_steps = []
        for i in tqdm(range(num_steps), desc="Encoding Image"):
            t = torch.full(
                (x0.shape[0],), i, device=self.model.device, dtype=torch.long
            )
            if unconditional_guidance_scale == 1.0:
                noise_pred = self.model.apply_model(x_next, t, c)
            else:
                assert unconditional_conditioning is not None
                e_t_uncond, noise_pred = torch.chunk(
                    self.model.apply_model(
                        torch.cat((x_next, x_next)),
                        torch.cat((t, t)),
                        torch.cat((unconditional_conditioning, c)),
                    ),
                    2,
                )
                noise_pred = e_t_uncond + unconditional_guidance_scale * (
                    noise_pred - e_t_uncond
                )

            xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
            weighted_noise_pred = (
                alphas_next[i].sqrt()
                * ((1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt())
                * noise_pred
            )
            x_next = xt_weighted + weighted_noise_pred
            if (
                return_intermediates
                and i % (num_steps // return_intermediates) == 0
                and i < num_steps - 1
            ):
                intermediates.append(x_next)
                inter_steps.append(i)
            elif return_intermediates and i >= num_steps - 2:
                intermediates.append(x_next)
                inter_steps.append(i)
            if callback:
                callback(i)


        out = {"x_encoded": x_next, "intermediate_steps": inter_steps}
        if return_intermediates:
            out.update({"intermediates": intermediates})
        return x_next, out

    @torch.no_grad()
    def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
        # fast, but does not allow for exact reconstruction
        # t serves as an index to gather the correct alphas
        if use_original_steps:
            sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
            sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
        else:
            sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
            sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas

        if noise is None:
            noise = torch.randn_like(x0)
        return (
            extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
            + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
        )

    @torch.no_grad()
    def decode(
        self,
        x_latent,
        cond,
        t_start,
        unconditional_guidance_scale=1.0,
        unconditional_conditioning=None,
        use_original_steps=False,
        callback=None,
    ):

        timesteps = (
            np.arange(self.ddpm_num_timesteps)
            if use_original_steps
            else self.ddim_timesteps
        )
        timesteps = timesteps[:t_start]

        time_range = np.flip(timesteps)
        total_steps = timesteps.shape[0]
        print(f"Running DDIM Sampling with {total_steps} timesteps")

        iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
        x_dec = x_latent
        for i, step in enumerate(iterator):
            index = total_steps - i - 1
            ts = torch.full(
                (x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
            )
            x_dec, _ = self.p_sample_ddim(
                x_dec,
                cond,
                ts,
                index=index,
                use_original_steps=use_original_steps,
                unconditional_guidance_scale=unconditional_guidance_scale,
                unconditional_conditioning=unconditional_conditioning,
            )
            if callback:
                callback(i)
        return x_dec