File size: 4,381 Bytes
5085882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torch.nn as nn
from timm.models.layers import to_2tuple


class PatchEmbed_org(nn.Module):
    """Image to Patch Embedding"""

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.patch_hw = (img_size[1] // patch_size[1], img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
        )

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        # assert H == self.img_size[0] and W == self.img_size[1], \
        #    f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)
        y = x.flatten(2).transpose(1, 2)
        return y


class PatchEmbed_new(nn.Module):
    """Flexible Image to Patch Embedding"""

    def __init__(
        self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, stride=10
    ):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        stride = to_2tuple(stride)

        self.img_size = img_size
        self.patch_size = patch_size

        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=patch_size, stride=stride
        )  # with overlapped patches
        # self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

        # self.patch_hw = (img_size[1] // patch_size[1], img_size[0] // patch_size[0])
        # self.num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        _, _, h, w = self.get_output_shape(img_size)  # n, emb_dim, h, w
        self.patch_hw = (h, w)
        self.num_patches = h * w

    def get_output_shape(self, img_size):
        # todo: don't be lazy..
        return self.proj(torch.randn(1, 1, img_size[0], img_size[1])).shape

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        # assert H == self.img_size[0] and W == self.img_size[1], \
        #    f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        # x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.proj(x)  # 32, 1, 1024, 128 -> 32, 768, 101, 12
        x = x.flatten(2)  # 32, 768, 101, 12 -> 32, 768, 1212
        x = x.transpose(1, 2)  # 32, 768, 1212 -> 32, 1212, 768
        return x


class PatchEmbed3D_new(nn.Module):
    """Flexible Image to Patch Embedding"""

    def __init__(
        self,
        video_size=(16, 224, 224),
        patch_size=(2, 16, 16),
        in_chans=3,
        embed_dim=768,
        stride=(2, 16, 16),
    ):
        super().__init__()

        self.video_size = video_size
        self.patch_size = patch_size
        self.in_chans = in_chans

        self.proj = nn.Conv3d(
            in_chans, embed_dim, kernel_size=patch_size, stride=stride
        )
        _, _, t, h, w = self.get_output_shape(video_size)  # n, emb_dim, h, w
        self.patch_thw = (t, h, w)
        self.num_patches = t * h * w

    def get_output_shape(self, video_size):
        # todo: don't be lazy..
        return self.proj(
            torch.randn(1, self.in_chans, video_size[0], video_size[1], video_size[2])
        ).shape

    def forward(self, x):
        B, C, T, H, W = x.shape
        x = self.proj(x)  # 32, 3, 16, 224, 224 -> 32, 768, 8, 14, 14
        x = x.flatten(2)  # 32, 768, 1568
        x = x.transpose(1, 2)  # 32, 768, 1568 -> 32, 1568, 768
        return x


if __name__ == "__main__":
    # patch_emb = PatchEmbed_new(img_size=224, patch_size=16, in_chans=1, embed_dim=64, stride=(16,16))
    # input = torch.rand(8,1,1024,128)
    # output = patch_emb(input)
    # print(output.shape) # (8,512,64)

    patch_emb = PatchEmbed3D_new(
        video_size=(6, 224, 224),
        patch_size=(2, 16, 16),
        in_chans=3,
        embed_dim=768,
        stride=(2, 16, 16),
    )
    input = torch.rand(8, 3, 6, 224, 224)
    output = patch_emb(input)
    print(output.shape)  # (8,64)