File size: 5,304 Bytes
5085882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).

# croco: https://github.com/naver/croco
# diffusers: https://github.com/huggingface/diffusers
# --------------------------------------------------------
# Position embedding utils
# --------------------------------------------------------

import numpy as np
import torch


def get_2d_sincos_pos_embed(
        embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
    """
    grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
    [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    if isinstance(grid_size, int):
        grid_size = (grid_size, grid_size)

    grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
    grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
    """
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000 ** omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


# ----------------------------------------------------------
# RoPE2D: RoPE implementation in 2D
# ----------------------------------------------------------

try:
    from .curope import cuRoPE2D

    RoPE2D = cuRoPE2D
except ImportError:
    print('Warning, cannot find cuda-compiled version of RoPE2D, using a slow pytorch version instead')


    class RoPE2D(torch.nn.Module):

        def __init__(self, freq=100.0, F0=1.0):
            super().__init__()
            self.base = freq
            self.F0 = F0
            self.cache = {}

        def get_cos_sin(self, D, seq_len, device, dtype):
            if (D, seq_len, device, dtype) not in self.cache:
                inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D))
                t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype)
                freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype)
                freqs = torch.cat((freqs, freqs), dim=-1)
                cos = freqs.cos()  # (Seq, Dim)
                sin = freqs.sin()
                self.cache[D, seq_len, device, dtype] = (cos, sin)
            return self.cache[D, seq_len, device, dtype]

        @staticmethod
        def rotate_half(x):
            x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
            return torch.cat((-x2, x1), dim=-1)

        def apply_rope1d(self, tokens, pos1d, cos, sin):
            assert pos1d.ndim == 2
            # import pdb
            # pdb.set_trace()
            cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :].squeeze(1)
            sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :].squeeze(1)
            return (tokens * cos) + (self.rotate_half(tokens) * sin)

        def forward(self, tokens, positions):
            """
            input:
                * tokens: batch_size x nheads x ntokens x dim
                * positions: batch_size x ntokens x 2 (y and x position of each token)
            output:
                * tokens after appplying RoPE2D (batch_size x nheads x ntokens x dim)
            """
            positions = positions.to(torch.int).to(tokens.device)
            assert tokens.size(2) % 2 == 0, "number of dimensions should be a multiple of two"
            D = tokens.size(2) // 2
            assert positions.ndim == 3 and positions.shape[-1] == 2  # Batch, Seq, 2
            cos, sin = self.get_cos_sin(D, int(positions.max()) + 1, tokens.device, tokens.dtype)
            # split features into two along the feature dimension, and apply rope1d on each half
            y, x = tokens.chunk(2, dim=-1)
            y = self.apply_rope1d(y, positions[:, :, 0], cos, sin)
            x = self.apply_rope1d(x, positions[:, :, 1], cos, sin)
            tokens = torch.cat((y, x), dim=-1)
            return tokens