File size: 48,101 Bytes
5085882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 |
# Ke Chen
# knutchen@ucsd.edu
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
# Some layers designed on the model
# below codes are based and referred from https://github.com/microsoft/Swin-Transformer
# Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
import torch
import torch.nn as nn
import torch.nn.functional as F
from itertools import repeat
import collections.abc
import math
import warnings
from torch.nn.init import _calculate_fan_in_and_fan_out
import torch.utils.checkpoint as checkpoint
import random
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
from torchlibrosa.augmentation import SpecAugmentation
from itertools import repeat
from .utils import do_mixup, interpolate
from .feature_fusion import iAFF, AFF, DAF
# from PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable):
return x
return tuple(repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
norm_layer=None,
flatten=True,
patch_stride=16,
enable_fusion=False,
fusion_type="None",
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patch_stride = to_2tuple(patch_stride)
self.img_size = img_size
self.patch_size = patch_size
self.patch_stride = patch_stride
self.grid_size = (
img_size[0] // patch_stride[0],
img_size[1] // patch_stride[1],
)
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.in_chans = in_chans
self.embed_dim = embed_dim
self.enable_fusion = enable_fusion
self.fusion_type = fusion_type
padding = (
(patch_size[0] - patch_stride[0]) // 2,
(patch_size[1] - patch_stride[1]) // 2,
)
if (self.enable_fusion) and (self.fusion_type == "channel_map"):
self.proj = nn.Conv2d(
in_chans * 4,
embed_dim,
kernel_size=patch_size,
stride=patch_stride,
padding=padding,
)
else:
self.proj = nn.Conv2d(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_stride,
padding=padding,
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
if (self.enable_fusion) and (
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
):
self.mel_conv2d = nn.Conv2d(
in_chans,
embed_dim,
kernel_size=(patch_size[0], patch_size[1] * 3),
stride=(patch_stride[0], patch_stride[1] * 3),
padding=padding,
)
if self.fusion_type == "daf_2d":
self.fusion_model = DAF()
elif self.fusion_type == "aff_2d":
self.fusion_model = AFF(channels=embed_dim, type="2D")
elif self.fusion_type == "iaff_2d":
self.fusion_model = iAFF(channels=embed_dim, type="2D")
def forward(self, x, longer_idx=None):
if (self.enable_fusion) and (
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
):
global_x = x[:, 0:1, :, :]
# global processing
B, C, H, W = global_x.shape
assert (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
global_x = self.proj(global_x)
TW = global_x.size(-1)
if len(longer_idx) > 0:
# local processing
local_x = x[longer_idx, 1:, :, :].contiguous()
B, C, H, W = local_x.shape
local_x = local_x.view(B * C, 1, H, W)
local_x = self.mel_conv2d(local_x)
local_x = local_x.view(
B, C, local_x.size(1), local_x.size(2), local_x.size(3)
)
local_x = local_x.permute((0, 2, 3, 1, 4)).contiguous().flatten(3)
TB, TC, TH, _ = local_x.size()
if local_x.size(-1) < TW:
local_x = torch.cat(
[
local_x,
torch.zeros(
(TB, TC, TH, TW - local_x.size(-1)),
device=global_x.device,
),
],
dim=-1,
)
else:
local_x = local_x[:, :, :, :TW]
global_x[longer_idx] = self.fusion_model(global_x[longer_idx], local_x)
x = global_x
else:
B, C, H, W = x.shape
assert (
H == self.img_size[0] and W == self.img_size[1]
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
x = self.norm(x)
return x
class Mlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = (
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(
B, H // window_size, W // window_size, window_size, window_size, -1
)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
r"""Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(
self,
dim,
window_size,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=0.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = q @ k.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
1
).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
def extra_repr(self):
return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}"
# We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model
class SwinTransformerBlock(nn.Module):
r"""Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(
self,
dim,
input_resolution,
num_heads,
window_size=7,
shift_size=0,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
norm_before_mlp="ln",
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
self.norm_before_mlp = norm_before_mlp
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert (
0 <= self.shift_size < self.window_size
), "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim,
window_size=to_2tuple(self.window_size),
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
if self.norm_before_mlp == "ln":
self.norm2 = nn.LayerNorm(dim)
elif self.norm_before_mlp == "bn":
self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose(
1, 2
)
else:
raise NotImplementedError
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
w_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(
img_mask, self.window_size
) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(
attn_mask != 0, float(-100.0)
).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def forward(self, x):
# pdb.set_trace()
H, W = self.input_resolution
# print("H: ", H)
# print("W: ", W)
# pdb.set_trace()
B, L, C = x.shape
# assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
)
else:
shifted_x = x
# partition windows
x_windows = window_partition(
shifted_x, self.window_size
) # nW*B, window_size, window_size, C
x_windows = x_windows.view(
-1, self.window_size * self.window_size, C
) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows, attn = self.attn(
x_windows, mask=self.attn_mask
) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
)
else:
x = shifted_x
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x, attn
def extra_repr(self):
return (
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
)
class PatchMerging(nn.Module):
r"""Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
def extra_repr(self):
return f"input_resolution={self.input_resolution}, dim={self.dim}"
class BasicLayer(nn.Module):
"""A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(
self,
dim,
input_resolution,
depth,
num_heads,
window_size,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False,
norm_before_mlp="ln",
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList(
[
SwinTransformerBlock(
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i]
if isinstance(drop_path, list)
else drop_path,
norm_layer=norm_layer,
norm_before_mlp=norm_before_mlp,
)
for i in range(depth)
]
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(
input_resolution, dim=dim, norm_layer=norm_layer
)
else:
self.downsample = None
def forward(self, x):
attns = []
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x, attn = blk(x)
if not self.training:
attns.append(attn.unsqueeze(0))
if self.downsample is not None:
x = self.downsample(x)
if not self.training:
attn = torch.cat(attns, dim=0)
attn = torch.mean(attn, dim=0)
return x, attn
def extra_repr(self):
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
# The Core of HTSAT
class HTSAT_Swin_Transformer(nn.Module):
r"""HTSAT based on the Swin Transformer
Args:
spec_size (int | tuple(int)): Input Spectrogram size. Default 256
patch_size (int | tuple(int)): Patch size. Default: 4
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
in_chans (int): Number of input image channels. Default: 1 (mono)
num_classes (int): Number of classes for classification head. Default: 527
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 8
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
config (module): The configuration Module from config.py
"""
def __init__(
self,
spec_size=256,
patch_size=4,
patch_stride=(4, 4),
in_chans=1,
num_classes=527,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[4, 8, 16, 32],
window_size=8,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
use_checkpoint=False,
norm_before_mlp="ln",
config=None,
enable_fusion=False,
fusion_type="None",
**kwargs,
):
super(HTSAT_Swin_Transformer, self).__init__()
self.config = config
self.spec_size = spec_size
self.patch_stride = patch_stride
self.patch_size = patch_size
self.window_size = window_size
self.embed_dim = embed_dim
self.depths = depths
self.ape = ape
self.in_chans = in_chans
self.num_classes = num_classes
self.num_heads = num_heads
self.num_layers = len(self.depths)
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
self.drop_rate = drop_rate
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.qkv_bias = qkv_bias
self.qk_scale = None
self.patch_norm = patch_norm
self.norm_layer = norm_layer if self.patch_norm else None
self.norm_before_mlp = norm_before_mlp
self.mlp_ratio = mlp_ratio
self.use_checkpoint = use_checkpoint
self.enable_fusion = enable_fusion
self.fusion_type = fusion_type
# process mel-spec ; used only once
self.freq_ratio = self.spec_size // self.config.mel_bins
window = "hann"
center = True
pad_mode = "reflect"
ref = 1.0
amin = 1e-10
top_db = None
self.interpolate_ratio = 32 # Downsampled ratio
# Spectrogram extractor
self.spectrogram_extractor = Spectrogram(
n_fft=config.window_size,
hop_length=config.hop_size,
win_length=config.window_size,
window=window,
center=center,
pad_mode=pad_mode,
freeze_parameters=True,
)
# Logmel feature extractor
self.logmel_extractor = LogmelFilterBank(
sr=config.sample_rate,
n_fft=config.window_size,
n_mels=config.mel_bins,
fmin=config.fmin,
fmax=config.fmax,
ref=ref,
amin=amin,
top_db=top_db,
freeze_parameters=True,
)
# Spec augmenter
self.spec_augmenter = SpecAugmentation(
time_drop_width=64,
time_stripes_num=2,
freq_drop_width=8,
freq_stripes_num=2,
) # 2 2
self.bn0 = nn.BatchNorm2d(self.config.mel_bins)
# split spctrogram into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=self.spec_size,
patch_size=self.patch_size,
in_chans=self.in_chans,
embed_dim=self.embed_dim,
norm_layer=self.norm_layer,
patch_stride=patch_stride,
enable_fusion=self.enable_fusion,
fusion_type=self.fusion_type,
)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.grid_size
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(
torch.zeros(1, num_patches, self.embed_dim)
)
trunc_normal_(self.absolute_pos_embed, std=0.02)
self.pos_drop = nn.Dropout(p=self.drop_rate)
# stochastic depth
dpr = [
x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))
] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(self.embed_dim * 2**i_layer),
input_resolution=(
patches_resolution[0] // (2**i_layer),
patches_resolution[1] // (2**i_layer),
),
depth=self.depths[i_layer],
num_heads=self.num_heads[i_layer],
window_size=self.window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias,
qk_scale=self.qk_scale,
drop=self.drop_rate,
attn_drop=self.attn_drop_rate,
drop_path=dpr[
sum(self.depths[:i_layer]) : sum(self.depths[: i_layer + 1])
],
norm_layer=self.norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
norm_before_mlp=self.norm_before_mlp,
)
self.layers.append(layer)
self.norm = self.norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.maxpool = nn.AdaptiveMaxPool1d(1)
SF = (
self.spec_size
// (2 ** (len(self.depths) - 1))
// self.patch_stride[0]
// self.freq_ratio
)
self.tscam_conv = nn.Conv2d(
in_channels=self.num_features,
out_channels=self.num_classes,
kernel_size=(SF, 3),
padding=(0, 1),
)
self.head = nn.Linear(num_classes, num_classes)
if (self.enable_fusion) and (
self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]
):
self.mel_conv1d = nn.Sequential(
nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2),
nn.BatchNorm1d(64),
)
if self.fusion_type == "daf_1d":
self.fusion_model = DAF()
elif self.fusion_type == "aff_1d":
self.fusion_model = AFF(channels=64, type="1D")
elif self.fusion_type == "iaff_1d":
self.fusion_model = iAFF(channels=64, type="1D")
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"absolute_pos_embed"}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {"relative_position_bias_table"}
def forward_features(self, x, longer_idx=None):
# A deprecated optimization for using a hierarchical output from different blocks
frames_num = x.shape[2]
x = self.patch_embed(x, longer_idx=longer_idx)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for i, layer in enumerate(self.layers):
x, attn = layer(x)
# for x
x = self.norm(x)
B, N, C = x.shape
SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
x = x.permute(0, 2, 1).contiguous().reshape(B, C, SF, ST)
B, C, F, T = x.shape
# group 2D CNN
c_freq_bin = F // self.freq_ratio
x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
x = x.permute(0, 1, 3, 2, 4).contiguous().reshape(B, C, c_freq_bin, -1)
# get latent_output
fine_grained_latent_output = torch.mean(x, dim=2)
fine_grained_latent_output = interpolate(
fine_grained_latent_output.permute(0, 2, 1).contiguous(),
8 * self.patch_stride[1],
)
latent_output = self.avgpool(torch.flatten(x, 2))
latent_output = torch.flatten(latent_output, 1)
# display the attention map, if needed
x = self.tscam_conv(x)
x = torch.flatten(x, 2) # B, C, T
fpx = interpolate(
torch.sigmoid(x).permute(0, 2, 1).contiguous(), 8 * self.patch_stride[1]
)
x = self.avgpool(x)
x = torch.flatten(x, 1)
output_dict = {
"framewise_output": fpx, # already sigmoided
"clipwise_output": torch.sigmoid(x),
"fine_grained_embedding": fine_grained_latent_output,
"embedding": latent_output,
}
return output_dict
def crop_wav(self, x, crop_size, spe_pos=None):
time_steps = x.shape[2]
tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device)
for i in range(len(x)):
if spe_pos is None:
crop_pos = random.randint(0, time_steps - crop_size - 1)
else:
crop_pos = spe_pos
tx[i][0] = x[i, 0, crop_pos : crop_pos + crop_size, :]
return tx
# Reshape the wavform to a img size, if you want to use the pretrained swin transformer model
def reshape_wav2img(self, x):
B, C, T, F = x.shape
target_T = int(self.spec_size * self.freq_ratio)
target_F = self.spec_size // self.freq_ratio
assert (
T <= target_T and F <= target_F
), "the wav size should less than or equal to the swin input size"
# to avoid bicubic zero error
if T < target_T:
x = nn.functional.interpolate(
x, (target_T, x.shape[3]), mode="bicubic", align_corners=True
)
if F < target_F:
x = nn.functional.interpolate(
x, (x.shape[2], target_F), mode="bicubic", align_corners=True
)
x = x.permute(0, 1, 3, 2).contiguous()
x = x.reshape(
x.shape[0],
x.shape[1],
x.shape[2],
self.freq_ratio,
x.shape[3] // self.freq_ratio,
)
# print(x.shape)
x = x.permute(0, 1, 3, 2, 4).contiguous()
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4])
return x
# Repeat the wavform to a img size, if you want to use the pretrained swin transformer model
def repeat_wat2img(self, x, cur_pos):
B, C, T, F = x.shape
target_T = int(self.spec_size * self.freq_ratio)
target_F = self.spec_size // self.freq_ratio
assert (
T <= target_T and F <= target_F
), "the wav size should less than or equal to the swin input size"
# to avoid bicubic zero error
if T < target_T:
x = nn.functional.interpolate(
x, (target_T, x.shape[3]), mode="bicubic", align_corners=True
)
if F < target_F:
x = nn.functional.interpolate(
x, (x.shape[2], target_F), mode="bicubic", align_corners=True
)
x = x.permute(0, 1, 3, 2).contiguous() # B C F T
x = x[:, :, :, cur_pos : cur_pos + self.spec_size]
x = x.repeat(repeats=(1, 1, 4, 1))
return x
def forward(
self, x: torch.Tensor, mixup_lambda=None, infer_mode=False, device=None
): # out_feat_keys: List[str] = None):
if self.enable_fusion and x["longer"].sum() == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
x["longer"][torch.randint(0, x["longer"].shape[0], (1,))] = True
if not self.enable_fusion:
x = x["waveform"].to(device=device, non_blocking=True)
x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
if self.training:
x = self.spec_augmenter(x)
if self.training and mixup_lambda is not None:
x = do_mixup(x, mixup_lambda)
x = self.reshape_wav2img(x)
output_dict = self.forward_features(x)
else:
longer_list = x["longer"].to(device=device, non_blocking=True)
x = x["mel_fusion"].to(device=device, non_blocking=True)
x = x.transpose(1, 3)
x = self.bn0(x)
x = x.transpose(1, 3)
longer_list_idx = torch.where(longer_list)[0]
if self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]:
new_x = x[:, 0:1, :, :].clone().contiguous()
if len(longer_list_idx) > 0:
# local processing
fusion_x_local = x[longer_list_idx, 1:, :, :].clone().contiguous()
FB, FC, FT, FF = fusion_x_local.size()
fusion_x_local = fusion_x_local.view(FB * FC, FT, FF)
fusion_x_local = torch.permute(
fusion_x_local, (0, 2, 1)
).contiguous()
fusion_x_local = self.mel_conv1d(fusion_x_local)
fusion_x_local = fusion_x_local.view(
FB, FC, FF, fusion_x_local.size(-1)
)
fusion_x_local = (
torch.permute(fusion_x_local, (0, 2, 1, 3))
.contiguous()
.flatten(2)
)
if fusion_x_local.size(-1) < FT:
fusion_x_local = torch.cat(
[
fusion_x_local,
torch.zeros(
(FB, FF, FT - fusion_x_local.size(-1)),
device=device,
),
],
dim=-1,
)
else:
fusion_x_local = fusion_x_local[:, :, :FT]
# 1D fusion
new_x = new_x.squeeze(1).permute((0, 2, 1)).contiguous()
new_x[longer_list_idx] = self.fusion_model(
new_x[longer_list_idx], fusion_x_local
)
x = new_x.permute((0, 2, 1)).contiguous()[:, None, :, :]
else:
x = new_x
elif self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d", "channel_map"]:
x = x # no change
if self.training:
x = self.spec_augmenter(x)
if self.training and mixup_lambda is not None:
x = do_mixup(x, mixup_lambda)
x = self.reshape_wav2img(x)
output_dict = self.forward_features(x, longer_idx=longer_list_idx)
# if infer_mode:
# # in infer mode. we need to handle different length audio input
# frame_num = x.shape[2]
# target_T = int(self.spec_size * self.freq_ratio)
# repeat_ratio = math.floor(target_T / frame_num)
# x = x.repeat(repeats=(1,1,repeat_ratio,1))
# x = self.reshape_wav2img(x)
# output_dict = self.forward_features(x)
# else:
# if x.shape[2] > self.freq_ratio * self.spec_size:
# if self.training:
# x = self.crop_wav(x, crop_size=self.freq_ratio * self.spec_size)
# x = self.reshape_wav2img(x)
# output_dict = self.forward_features(x)
# else:
# # Change: Hard code here
# overlap_size = (x.shape[2] - 1) // 4
# output_dicts = []
# crop_size = (x.shape[2] - 1) // 2
# for cur_pos in range(0, x.shape[2] - crop_size - 1, overlap_size):
# tx = self.crop_wav(x, crop_size = crop_size, spe_pos = cur_pos)
# tx = self.reshape_wav2img(tx)
# output_dicts.append(self.forward_features(tx))
# clipwise_output = torch.zeros_like(output_dicts[0]["clipwise_output"]).float().to(x.device)
# framewise_output = torch.zeros_like(output_dicts[0]["framewise_output"]).float().to(x.device)
# for d in output_dicts:
# clipwise_output += d["clipwise_output"]
# framewise_output += d["framewise_output"]
# clipwise_output = clipwise_output / len(output_dicts)
# framewise_output = framewise_output / len(output_dicts)
# output_dict = {
# 'framewise_output': framewise_output,
# 'clipwise_output': clipwise_output
# }
# else: # this part is typically used, and most easy one
# x = self.reshape_wav2img(x)
# output_dict = self.forward_features(x)
# x = self.head(x)
# We process the data in the dataloader part, in that here we only consider the input_T < fixed_T
return output_dict
def create_htsat_model(audio_cfg, enable_fusion=False, fusion_type="None"):
try:
assert audio_cfg.model_name in [
"tiny",
"base",
"large",
], "model name for HTS-AT is wrong!"
if audio_cfg.model_name == "tiny":
model = HTSAT_Swin_Transformer(
spec_size=256,
patch_size=4,
patch_stride=(4, 4),
num_classes=audio_cfg.class_num,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[4, 8, 16, 32],
window_size=8,
config=audio_cfg,
enable_fusion=enable_fusion,
fusion_type=fusion_type,
)
elif audio_cfg.model_name == "base":
model = HTSAT_Swin_Transformer(
spec_size=256,
patch_size=4,
patch_stride=(4, 4),
num_classes=audio_cfg.class_num,
embed_dim=128,
depths=[2, 2, 12, 2],
num_heads=[4, 8, 16, 32],
window_size=8,
config=audio_cfg,
enable_fusion=enable_fusion,
fusion_type=fusion_type,
)
elif audio_cfg.model_name == "large":
model = HTSAT_Swin_Transformer(
spec_size=256,
patch_size=4,
patch_stride=(4, 4),
num_classes=audio_cfg.class_num,
embed_dim=256,
depths=[2, 2, 12, 2],
num_heads=[4, 8, 16, 32],
window_size=8,
config=audio_cfg,
enable_fusion=enable_fusion,
fusion_type=fusion_type,
)
return model
except:
raise RuntimeError(
f"Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough."
)
|