|
import os |
|
import json |
|
|
|
import torch |
|
import numpy as np |
|
|
|
import qa_mdt.audioldm_train.modules.hifigan as hifigan |
|
|
|
import importlib |
|
|
|
import torch |
|
import numpy as np |
|
from collections import abc |
|
|
|
import multiprocessing as mp |
|
from threading import Thread |
|
from queue import Queue |
|
|
|
from inspect import isfunction |
|
from PIL import Image, ImageDraw, ImageFont |
|
import json |
|
with open('/content/qa-mdt/offset_pretrained_checkpoints.json', 'r') as config_file: |
|
config_data = json.load(config_file) |
|
|
|
def log_txt_as_img(wh, xc, size=10): |
|
|
|
|
|
b = len(xc) |
|
txts = list() |
|
for bi in range(b): |
|
txt = Image.new("RGB", wh, color="white") |
|
draw = ImageDraw.Draw(txt) |
|
font = ImageFont.truetype("data/DejaVuSans.ttf", size=size) |
|
nc = int(40 * (wh[0] / 256)) |
|
lines = "\n".join( |
|
xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc) |
|
) |
|
|
|
try: |
|
draw.text((0, 0), lines, fill="black", font=font) |
|
except UnicodeEncodeError: |
|
print("Cant encode string for logging. Skipping.") |
|
|
|
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 |
|
txts.append(txt) |
|
txts = np.stack(txts) |
|
txts = torch.tensor(txts) |
|
return txts |
|
|
|
|
|
def ismap(x): |
|
if not isinstance(x, torch.Tensor): |
|
return False |
|
return (len(x.shape) == 4) and (x.shape[1] > 3) |
|
|
|
|
|
def isimage(x): |
|
if not isinstance(x, torch.Tensor): |
|
return False |
|
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) |
|
|
|
|
|
def int16_to_float32(x): |
|
return (x / 32767.0).astype(np.float32) |
|
|
|
|
|
def float32_to_int16(x): |
|
x = np.clip(x, a_min=-1.0, a_max=1.0) |
|
return (x * 32767.0).astype(np.int16) |
|
|
|
|
|
def exists(x): |
|
return x is not None |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def mean_flat(tensor): |
|
""" |
|
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 |
|
Take the mean over all non-batch dimensions. |
|
""" |
|
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
|
|
|
|
|
def count_params(model, verbose=False): |
|
total_params = sum(p.numel() for p in model.parameters()) |
|
if verbose: |
|
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") |
|
return total_params |
|
|
|
|
|
def instantiate_from_config(config): |
|
if not "target" in config: |
|
if config == "__is_first_stage__": |
|
return None |
|
elif config == "__is_unconditional__": |
|
return None |
|
raise KeyError("Expected key `target` to instantiate.") |
|
return get_obj_from_str(config["target"])(**config.get("params", dict())) |
|
|
|
|
|
def get_obj_from_str(string, reload=False): |
|
module, cls = string.rsplit(".", 1) |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
|
|
def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False): |
|
|
|
|
|
|
|
if idx_to_fn: |
|
res = func(data, worker_id=idx) |
|
else: |
|
res = func(data) |
|
Q.put([idx, res]) |
|
Q.put("Done") |
|
|
|
|
|
def parallel_data_prefetch( |
|
func: callable, |
|
data, |
|
n_proc, |
|
target_data_type="ndarray", |
|
cpu_intensive=True, |
|
use_worker_id=False, |
|
): |
|
|
|
|
|
|
|
|
|
if isinstance(data, np.ndarray) and target_data_type == "list": |
|
raise ValueError("list expected but function got ndarray.") |
|
elif isinstance(data, abc.Iterable): |
|
if isinstance(data, dict): |
|
print( |
|
f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.' |
|
) |
|
data = list(data.values()) |
|
if target_data_type == "ndarray": |
|
data = np.asarray(data) |
|
else: |
|
data = list(data) |
|
else: |
|
raise TypeError( |
|
f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}." |
|
) |
|
|
|
if cpu_intensive: |
|
Q = mp.Queue(1000) |
|
proc = mp.Process |
|
else: |
|
Q = Queue(1000) |
|
proc = Thread |
|
|
|
if target_data_type == "ndarray": |
|
arguments = [ |
|
[func, Q, part, i, use_worker_id] |
|
for i, part in enumerate(np.array_split(data, n_proc)) |
|
] |
|
else: |
|
step = ( |
|
int(len(data) / n_proc + 1) |
|
if len(data) % n_proc != 0 |
|
else int(len(data) / n_proc) |
|
) |
|
arguments = [ |
|
[func, Q, part, i, use_worker_id] |
|
for i, part in enumerate( |
|
[data[i : i + step] for i in range(0, len(data), step)] |
|
) |
|
] |
|
processes = [] |
|
for i in range(n_proc): |
|
p = proc(target=_do_parallel_data_prefetch, args=arguments[i]) |
|
processes += [p] |
|
|
|
|
|
print(f"Start prefetching...") |
|
import time |
|
|
|
start = time.time() |
|
gather_res = [[] for _ in range(n_proc)] |
|
try: |
|
for p in processes: |
|
p.start() |
|
|
|
k = 0 |
|
while k < n_proc: |
|
|
|
res = Q.get() |
|
if res == "Done": |
|
k += 1 |
|
else: |
|
gather_res[res[0]] = res[1] |
|
|
|
except Exception as e: |
|
print("Exception: ", e) |
|
for p in processes: |
|
p.terminate() |
|
|
|
raise e |
|
finally: |
|
for p in processes: |
|
p.join() |
|
print(f"Prefetching complete. [{time.time() - start} sec.]") |
|
|
|
if target_data_type == "ndarray": |
|
if not isinstance(gather_res[0], np.ndarray): |
|
return np.concatenate([np.asarray(r) for r in gather_res], axis=0) |
|
|
|
|
|
return np.concatenate(gather_res, axis=0) |
|
elif target_data_type == "list": |
|
out = [] |
|
for r in gather_res: |
|
out.extend(r) |
|
return out |
|
else: |
|
return gather_res |
|
|
|
|
|
def get_available_checkpoint_keys(model, ckpt): |
|
print("==> Attemp to reload from %s" % ckpt) |
|
state_dict = torch.load(ckpt)["state_dict"] |
|
current_state_dict = model.state_dict() |
|
new_state_dict = {} |
|
for k in state_dict.keys(): |
|
if ( |
|
k in current_state_dict.keys() |
|
and current_state_dict[k].size() == state_dict[k].size() |
|
): |
|
new_state_dict[k] = state_dict[k] |
|
else: |
|
print("==> WARNING: Skipping %s" % k) |
|
print( |
|
"%s out of %s keys are matched" |
|
% (len(new_state_dict.keys()), len(state_dict.keys())) |
|
) |
|
return new_state_dict |
|
|
|
|
|
def get_param_num(model): |
|
num_param = sum(param.numel() for param in model.parameters()) |
|
return num_param |
|
|
|
|
|
def torch_version_orig_mod_remove(state_dict): |
|
new_state_dict = {} |
|
new_state_dict["generator"] = {} |
|
for key in state_dict["generator"].keys(): |
|
if "_orig_mod." in key: |
|
new_state_dict["generator"][key.replace("_orig_mod.", "")] = state_dict[ |
|
"generator" |
|
][key] |
|
else: |
|
new_state_dict["generator"][key] = state_dict["generator"][key] |
|
return new_state_dict |
|
|
|
|
|
def get_vocoder(config, device, mel_bins): |
|
ROOT = config_data["hifi-gan"] |
|
|
|
if mel_bins == 64: |
|
|
|
|
|
model_path = os.path.join(ROOT, "hifigan_16k_64bins") |
|
with open(model_path + ".json", "r") as f: |
|
config = json.load(f) |
|
config = hifigan.AttrDict(config) |
|
vocoder = hifigan.Generator(config) |
|
elif mel_bins == 256: |
|
model_path = os.path.join(ROOT, "hifigan_48k_256bins") |
|
with open(model_path + ".json", "r") as f: |
|
config = json.load(f) |
|
config = hifigan.AttrDict(config) |
|
vocoder = hifigan.Generator_HiFiRes(config) |
|
|
|
ckpt = torch.load(model_path + ".ckpt") |
|
ckpt = torch_version_orig_mod_remove(ckpt) |
|
vocoder.load_state_dict(ckpt["generator"]) |
|
vocoder.eval() |
|
vocoder.remove_weight_norm() |
|
vocoder.to(device) |
|
return vocoder |
|
|
|
|
|
def vocoder_infer(mels, vocoder, lengths=None): |
|
with torch.no_grad(): |
|
wavs = vocoder(mels).squeeze(1) |
|
|
|
wavs = (wavs.cpu().numpy() * 32768).astype("int16") |
|
|
|
if lengths is not None: |
|
wavs = wavs[:, :lengths] |
|
|
|
return wavs |
|
|