--- library_name: diffusers tags: - music --- # Official Hugging Face Diffusers Implementation of QA-MDT **QAMDT: Quality-Aware Diffusion for Text-to-Music 🎶** QADMT brings a new approach to text-to-music generation by using quality-aware training to tackle issues like low-fidelity audio and weak labeling in datasets. With a masked diffusion transformer (MDT), QADMT delivers SOTA results on MusicCaps and Song-Describer, enhancing both quality and musicality. Here’s the revised version with "et al.": It follows from [this paper](https://arxiv.org/pdf/2405.15863) by the University of Science and Technology of China, authored by [@changli](https://github.com/ivcylc) *et al.*. ## Usage: ```bash !git lfs install !git clone https://huggingface.co/jadechoghari/openmusic ``` Manually change the folder name from `openmusic` to `qa_mdt` ```bash pip install -r qa_mdt/requirements.txt pip install xformers==0.0.26.post1 pip install torchlibrosa==0.0.9 librosa==0.9.2 pip install -q pytorch_lightning==2.1.3 torchlibrosa==0.0.9 librosa==0.9.2 ftfy==6.1.1 braceexpand pip install torch==2.3.0+cu121 torchvision==0.18.0+cu121 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cu121 ``` ```python from qa_mdt.pipeline import MOSDiffusionPipeline pipe = MOSDiffusionPipeline() pipe("A modern synthesizer creating futuristic soundscapes.") ``` # Enjoy the music!! 🎶