# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # DeiT: https://github.com/facebookresearch/deit # BEiT: https://github.com/microsoft/unilm/tree/master/beit # -------------------------------------------------------- import builtins import datetime import os import time from collections import defaultdict, deque from pathlib import Path import torch import torch.distributed as dist from torch._six import inf class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, ) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError( "'{}' object has no attribute '{}'".format(type(self).__name__, attr) ) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.4f}") data_time = SmoothedValue(fmt="{avg:.4f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" log_msg = [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] if torch.cuda.is_available(): log_msg.append("max mem: {memory:.0f}") log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print( "{} Total time: {} ({:.4f} s / it)".format( header, total_time_str, total_time / len(iterable) ) ) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ builtin_print = builtins.print def print(*args, **kwargs): force = kwargs.pop("force", False) force = force or (get_world_size() > 8) if is_master or force: now = datetime.datetime.now().time() builtin_print("[{}] ".format(now), end="") # print with time stamp builtin_print(*args, **kwargs) builtins.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if args.dist_on_itp: args.rank = int(os.environ["OMPI_COMM_WORLD_RANK"]) args.world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"]) args.gpu = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]) args.dist_url = "tcp://%s:%s" % ( os.environ["MASTER_ADDR"], os.environ["MASTER_PORT"], ) os.environ["LOCAL_RANK"] = str(args.gpu) os.environ["RANK"] = str(args.rank) os.environ["WORLD_SIZE"] = str(args.world_size) # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] elif "RANK" in os.environ and "WORLD_SIZE" in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ["WORLD_SIZE"]) args.gpu = int(os.environ["LOCAL_RANK"]) elif "SLURM_PROCID" in os.environ: args.rank = int(os.environ["SLURM_PROCID"]) args.gpu = args.rank % torch.cuda.device_count() else: print("Not using distributed mode") setup_for_distributed(is_master=True) # hack args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = "nccl" print( "| distributed init (rank {}): {}, gpu {}".format( args.rank, args.dist_url, args.gpu ), flush=True, ) torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank, ) torch.distributed.barrier() setup_for_distributed(args.rank == 0) class NativeScalerWithGradNormCount: state_dict_key = "amp_scaler" def __init__(self): self._scaler = torch.cuda.amp.GradScaler() def __call__( self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True, ): self._scaler.scale(loss).backward(create_graph=create_graph) if update_grad: if clip_grad is not None: assert parameters is not None self._scaler.unscale_( optimizer ) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters) self._scaler.step(optimizer) self._scaler.update() else: norm = None return norm def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict) def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.0) device = parameters[0].grad.device if norm_type == inf: total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) else: total_norm = torch.norm( torch.stack( [torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters] ), norm_type, ) return total_norm def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler): output_dir = Path(args.output_dir) epoch_name = str(epoch) if loss_scaler is not None: checkpoint_paths = [output_dir / ("checkpoint-%s.pth" % epoch_name)] for checkpoint_path in checkpoint_paths: to_save = { "model": model_without_ddp.state_dict(), "optimizer": optimizer.state_dict(), "epoch": epoch, "scaler": loss_scaler.state_dict(), "args": args, } save_on_master(to_save, checkpoint_path) else: client_state = {"epoch": epoch} model.save_checkpoint( save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state, ) def load_model(args, model_without_ddp, optimizer, loss_scaler): if args.resume: if args.resume.startswith("https"): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location="cpu", check_hash=True ) else: checkpoint = torch.load(args.resume, map_location="cpu") model_without_ddp.load_state_dict(checkpoint["model"]) print("Resume checkpoint %s" % args.resume) if ( "optimizer" in checkpoint and "epoch" in checkpoint and not (hasattr(args, "eval") and args.eval) ): optimizer.load_state_dict(checkpoint["optimizer"]) args.start_epoch = checkpoint["epoch"] + 1 if "scaler" in checkpoint: loss_scaler.load_state_dict(checkpoint["scaler"]) print("With optim & sched!") def all_reduce_mean(x): world_size = get_world_size() if world_size > 1: x_reduce = torch.tensor(x).cuda() dist.all_reduce(x_reduce) x_reduce /= world_size return x_reduce.item() else: return x # utils @torch.no_grad() def concat_all_gather(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ tensors_gather = [ torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size()) ] torch.distributed.all_gather(tensors_gather, tensor, async_op=False) output = torch.cat(tensors_gather, dim=0) return output def merge_vmae_to_avmae(avmae_state_dict, vmae_ckpt): # keys_to_copy=['pos_embed','patch_embed'] # replaced=0 vmae_ckpt["cls_token"] = vmae_ckpt["cls_token_v"] vmae_ckpt["mask_token"] = vmae_ckpt["mask_token_v"] # pos_emb % not trainable, use default pos_embed_v = vmae_ckpt["pos_embed_v"] # 1,589,768 pos_embed = pos_embed_v[:, 1:, :] # 1,588,768 cls_embed = pos_embed_v[:, 0, :].unsqueeze(1) pos_embed = pos_embed.reshape(1, 2, 14, 14, 768).sum(dim=1) # 1, 14, 14, 768 print("Position interpolate from 14,14 to 64,8") pos_embed = pos_embed.permute(0, 3, 1, 2) # 1, 14,14,768 -> 1,768,14,14 pos_embed = torch.nn.functional.interpolate( pos_embed, size=(64, 8), mode="bicubic", align_corners=False ) pos_embed = pos_embed.permute(0, 2, 3, 1).flatten( 1, 2 ) # 1, 14, 14, 768 => 1, 196,768 pos_embed = torch.cat((cls_embed, pos_embed), dim=1) assert vmae_ckpt["pos_embed"].shape == pos_embed.shape vmae_ckpt["pos_embed"] = pos_embed # patch_emb # aggregate 3 channels in video-rgb ckpt to 1 channel for audio v_weight = vmae_ckpt["patch_embed_v.proj.weight"] # 768,3,2,16,16 new_proj_weight = torch.nn.Parameter(v_weight.sum(dim=2).sum(dim=1).unsqueeze(1)) assert new_proj_weight.shape == vmae_ckpt["patch_embed.proj.weight"].shape vmae_ckpt["patch_embed.proj.weight"] = new_proj_weight vmae_ckpt["patch_embed.proj.bias"] = vmae_ckpt["patch_embed_v.proj.bias"] # hack vmae_ckpt["norm.weight"] = vmae_ckpt["norm_v.weight"] vmae_ckpt["norm.bias"] = vmae_ckpt["norm_v.bias"] # replace transformer encoder for k, v in vmae_ckpt.items(): if k.startswith("blocks."): kk = k.replace("blocks.", "blocks_v.") vmae_ckpt[k] = vmae_ckpt[kk] elif k.startswith("blocks_v."): pass else: print(k) pass print(k)