YAML Metadata Error: "language" must only contain lowercase characters

wav2vec2-base-gujarati-demo

Fine-tuned facebook/wav2vec2-large-xlsr-53 in Guj When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

common_voice_train,common_voice_test = load_dataset('csv', data_files={'train': 'train.csv','test': 'test.csv'},error_bad_lines=False,encoding='utf-8',split=['train', 'test']).

processor = Wav2Vec2Processor.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")
model = Wav2Vec2ForCTC.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = common_voice_test.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
     logits = model(inputs.input_values).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][0].lower())

Evaluation

The model can be evaluated as follows on the {language} test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

common_voice_validation = load_dataset('csv', data_files={'test': 'validation.csv'},error_bad_lines=False,encoding='utf-8',split='test')
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")
model = Wav2Vec2ForCTC.from_pretrained("Amrrs/wav2vec2-base-gujarati-demo")
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = common_voice_validation.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda")).logits
    
    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = common_voice_validation.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 28.92 %

Training

The Google datasets were used for training.

The script used for training can be found here

Downloads last month
1,159
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results