jalaluddin94 commited on
Commit
5691966
1 Parent(s): ee68995

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: xlm-roberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: xlmr-nli-indoindo
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # xlmr-nli-indoindo
20
+
21
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.6699
24
+ - Accuracy: 0.7701
25
+ - Precision: 0.7701
26
+ - Recall: 0.7701
27
+ - F1: 0.7693
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-06
47
+ - train_batch_size: 6
48
+ - eval_batch_size: 6
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_ratio: 0.1
53
+ - num_epochs: 6
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
58
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
59
+ | 1.0444 | 1.0 | 1722 | 0.8481 | 0.6463 | 0.6463 | 0.6463 | 0.6483 |
60
+ | 0.7958 | 2.0 | 3444 | 0.7483 | 0.7369 | 0.7369 | 0.7369 | 0.7353 |
61
+ | 0.7175 | 3.0 | 5166 | 0.6812 | 0.7579 | 0.7579 | 0.7579 | 0.7576 |
62
+ | 0.66 | 4.0 | 6888 | 0.6293 | 0.7679 | 0.7679 | 0.7679 | 0.7674 |
63
+ | 0.6056 | 5.0 | 8610 | 0.6459 | 0.7651 | 0.7651 | 0.7651 | 0.7640 |
64
+ | 0.5769 | 6.0 | 10332 | 0.6699 | 0.7701 | 0.7701 | 0.7701 | 0.7693 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.31.0.dev0
70
+ - Pytorch 2.0.0
71
+ - Datasets 2.1.0
72
+ - Tokenizers 0.13.3