jalaluddin94
commited on
Commit
•
5691966
1
Parent(s):
ee68995
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlm-roberta-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: xlmr-nli-indoindo
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# xlmr-nli-indoindo
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.6699
|
24 |
+
- Accuracy: 0.7701
|
25 |
+
- Precision: 0.7701
|
26 |
+
- Recall: 0.7701
|
27 |
+
- F1: 0.7693
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-06
|
47 |
+
- train_batch_size: 6
|
48 |
+
- eval_batch_size: 6
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 6
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
59 |
+
| 1.0444 | 1.0 | 1722 | 0.8481 | 0.6463 | 0.6463 | 0.6463 | 0.6483 |
|
60 |
+
| 0.7958 | 2.0 | 3444 | 0.7483 | 0.7369 | 0.7369 | 0.7369 | 0.7353 |
|
61 |
+
| 0.7175 | 3.0 | 5166 | 0.6812 | 0.7579 | 0.7579 | 0.7579 | 0.7576 |
|
62 |
+
| 0.66 | 4.0 | 6888 | 0.6293 | 0.7679 | 0.7679 | 0.7679 | 0.7674 |
|
63 |
+
| 0.6056 | 5.0 | 8610 | 0.6459 | 0.7651 | 0.7651 | 0.7651 | 0.7640 |
|
64 |
+
| 0.5769 | 6.0 | 10332 | 0.6699 | 0.7701 | 0.7701 | 0.7701 | 0.7693 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.31.0.dev0
|
70 |
+
- Pytorch 2.0.0
|
71 |
+
- Datasets 2.1.0
|
72 |
+
- Tokenizers 0.13.3
|