File size: 2,903 Bytes
c7f70d3
 
 
 
8a75540
c7f70d3
 
 
8a75540
 
 
 
 
 
 
 
 
 
 
 
c7f70d3
 
 
 
 
 
 
 
 
 
 
8a75540
c7f70d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: mit
library_name: peft
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- jan-hq/distilabel_dpo_pairs_binarized
- argilla/OpenHermes2.5-dpo-binarized-alpha
- jan-hq/capybara_dpo_binarized
- jan-hq/bagel_dpo_binarized
- jan-hq/ultrafeedback_preferences_cleaned_binarized
- jan-hq/openmath_instruct_dpo_binarized
- jan-hq/distil_math_dpo_binarized
- jan-hq/evol_codealpaca_dpo_binarized
base_model: TomGrc/FusionNet_7Bx2_MoE_v0.1
model-index:
- name: stealth-finance-v2-dpo-adapter
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# stealth-finance-v2-dpo-adapter

This model is a fine-tuned version of [TomGrc/FusionNet_7Bx2_MoE_v0.1](https://huggingface.co/TomGrc/FusionNet_7Bx2_MoE_v0.1) on the jan-hq/distilabel_dpo_pairs_binarized, the argilla/OpenHermes2.5-dpo-binarized-alpha, the jan-hq/capybara_dpo_binarized, the jan-hq/bagel_dpo_binarized, the jan-hq/ultrafeedback_preferences_cleaned_binarized, the jan-hq/openmath_instruct_dpo_binarized, the jan-hq/distil_math_dpo_binarized and the jan-hq/evol_codealpaca_dpo_binarized datasets.
It achieves the following results on the evaluation set:
- Loss: 0.1290
- Rewards/chosen: -0.1799
- Rewards/rejected: -6.0696
- Rewards/accuracies: 0.8597
- Rewards/margins: 5.8897
- Logps/rejected: -324.0384
- Logps/chosen: -275.3572
- Logits/rejected: -0.7749
- Logits/chosen: -0.7773

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.3593        | 1.0   | 3280 | 0.1290          | -0.1799        | -6.0696          | 0.8597             | 5.8897          | -324.0384      | -275.3572    | -0.7749         | -0.7773       |


### Framework versions

- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0